4.(理科)已知f(x)是定義在[a,b]上的函數(shù),如果存在常數(shù)M>0,對(duì)區(qū)間[a,b]的任意劃分:a=x0<x1<…<xn-1<xn=b,和式$\sum_{i=1}^{n}|f({x}_{i})-f({x}_{i-1})|$≤M恒成立,則稱f(x)為[a,b]上的“絕對(duì)差有界函數(shù)”,注:$\sum_{i=1}^{n}{a}_{i}={a}_{1}+{a}_{2}+…+{a}_{n}$;
(1)證明函數(shù)f(x)=sinx+cosx在[-$\frac{π}{2}$,0]上是“絕對(duì)差有界函數(shù)”;
(2)證明函數(shù)f(x)=$\left\{\begin{array}{l}{xcos\frac{π}{2x},0<x≤1}\\{0;x=0}\end{array}\right.$不是[0,1]上的“絕對(duì)差有界函數(shù)”;
(3)記集合A={f(x)|存在常數(shù)k>0,對(duì)任意的x1,x2∈[a,b],有|f(x1)-f(x2)|≤k|x1-x2|成立},證明集合A中的任意函數(shù)f(x)均為“絕對(duì)差有界函數(shù)”,并判斷g(x)=2016sin(2016x)是否在集合A中,如果在,請(qǐng)證明并求k的最小值,如果不在,請(qǐng)說(shuō)明理由.

分析 (1)利用函數(shù)在[-$\frac{π}{2}$,0]是增函數(shù),去掉絕對(duì)值,將連和符號(hào)用函數(shù)值的和表示出,求出值為,取M大于等于此值,滿足“絕對(duì)差有界函數(shù)”的定義;
(2)舉例說(shuō)明函數(shù)f(x)對(duì)于和式$\sum_{i=1}^{n}|f({x}_{i})-f({x}_{i-1})|$=$\sum_{i=1}^{n}$[$\frac{1}{2•(2i+1)}$+$\frac{1}{2•2i}$]≤M不成立即可;
(3)利用已知不等式,將函數(shù)值差的連和表示成自變量差的連和,去掉絕對(duì)值,將連和寫(xiě)成自變量差的和形式,求出連和的值,找到M,滿足有界變差的定義即可.

解答 解:(1)∵f(x)=sinx+cosx=$\sqrt{2}$sin(x+$\frac{π}{4}$)在[-$\frac{π}{2}$,0]上是增函數(shù),
∴對(duì)任意劃分f(xn)>f(xn-1),
∴|f(xi)-f(xi-1)|=f(x1)-f(x0)+…+f(xn)-f(xn-1)=f(0)-f(-$\frac{π}{2}$)=2;
取常數(shù)M≥2,則和式$\sum_{i=1}^{n}|f({x}_{i})-f({x}_{i-1})|$≤M恒成立,
∴函數(shù)f(x)在[-$\frac{π}{2}$,0]上是“絕對(duì)差有界函數(shù)”;
(2)證明:∵函數(shù)f(x)=$\left\{\begin{array}{l}{xcos\frac{π}{2x},0<x≤1}\\{0;x=0}\end{array}\right.$,
令xi=$\frac{1}{2(2i+1)}$,xi-1=$\frac{1}{2•2i}$,i∈N*,
則f(xi)-f(xj)=-$\frac{1}{2•(2i+1)}$-$\frac{1}{2•2i}$;
∴和式$\sum_{i=1}^{n}|f({x}_{i})-f({x}_{i-1})|$=$\sum_{i=1}^{n}$[$\frac{1}{2•(2i+1)}$+$\frac{1}{2•2i}$]≤M不成立,
故函數(shù)f(x)不是[0,1]上的“絕對(duì)差有界函數(shù)”;
(3)∵存在常數(shù)k,使得對(duì)于任意的x1,x2∈[a,b],|f(x1)-f(x2)|≤k|x1-x2|,
∴$\sum_{i=1}^{n}$|f(xi)-f(xi-1)|≤$\sum_{i=1}^{n}$|xi-xi-1|=k(b-a);
故存在常數(shù)M=k(b-a),使得$\sum_{i=1}^{n}$|f(xi)-f(xi-1)|≤M恒成立,
所以f(x)為[a,b]上的“絕對(duì)差有界函數(shù)”;
又函數(shù)g(x)=2016sin(2016x),
令x1=-$\frac{π}{4032}$,x2=$\frac{π}{4032}$,
∴|f(x1)-f(x2)|≤2016×(-1-1)=4032,
∴存在k≥4032,使g(x)=2016sin(2016x)在集合A中.

點(diǎn)評(píng) 本題以新定義函數(shù)為載體,考查了對(duì)新定義的理解與應(yīng)用問(wèn)題,是較難的題目,判斷一個(gè)函數(shù)是否是“絕對(duì)差有界函數(shù)”,關(guān)鍵是求出函數(shù)差的連和,找出M的值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.展開(kāi)(x-$\frac{1}{2}$)5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.函數(shù)f(x)=2sin(ωx+φ)(ω>0,0<φ<π)的部分圖象如圖所示.
(I)求f(x)的解析式,并求函數(shù)f(x)在[-$\frac{π}{12}$,$\frac{π}{4}$]上的值域;
(2)在△ABC中,AB=3,AC=2,f(A)=1,求sin2B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.如圖,一渡船自岸邊A處出發(fā),與岸邊成70°方向以30kmh的速度航行,由于河水流速的影響,它實(shí)際航行的方向與河岸成120°,試求水流速度(水流方向與河岸平行,精確到0.1km/h

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.設(shè)z∈C,z+2i,$\frac{z}{2-i}$均為實(shí)數(shù).
(1)求z;
(2)求ω=z2+3$\overline{z}$-4($\overline{z}$是z的共軛復(fù)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c.
(1)若$\frac{a}{cosA}$=$\frac{cosB}$,且sin2A(2-cosC)=cos2B+$\frac{1}{2}$,求角C的大。
(2)若△ABC為銳角三角形,且A=$\frac{π}{4}$,a=2,求△ABC面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.設(shè)函數(shù)f(x)=ax1nx+be(其中a,b∈R,e為自然對(duì)數(shù)的底數(shù),e=2.71828…)曲線y=f(x)在點(diǎn)(e,f(e))處的切線方程為y=2x,g(x)=$\frac{2x}{{e}^{x}}$-$\frac{3}{e}$+e.
(1)求a,b;
(2)證明:對(duì)任意x1,x2∈(0,+∞),f(x1)≥g(x2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.若P點(diǎn)是以F1(-3,0)、F2(3,0)為焦點(diǎn),實(shí)軸長(zhǎng)為4的雙曲線與圓x2+y2=9的一個(gè)交點(diǎn),則|PF1|+|PF2|=(  )
A.$\sqrt{13}$B.6C.2$\sqrt{14}$D.2$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知橢圓$E:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$經(jīng)過(guò)點(diǎn)$({2\sqrt{2},2})$,且離心率為$\frac{{\sqrt{2}}}{2}$,F(xiàn)1,F(xiàn)2是橢圓E的左,右焦點(diǎn)
(1)求橢圓E的方程;
(2)若點(diǎn)A,B是橢圓E上關(guān)于y軸對(duì)稱兩點(diǎn)(A,B不是長(zhǎng)軸的端點(diǎn)),點(diǎn)P是橢圓E上異于A,B的一點(diǎn),且直線PA,PB分別交y軸于點(diǎn)M,N,求證:直線MF1與直線NF2的交點(diǎn)G在定圓上.

查看答案和解析>>

同步練習(xí)冊(cè)答案