5.已知函數(shù)f(x)=ex•sinx,若當(dāng)x=θ時,f(x)取得極小值,則sinθ=$-\frac{{\sqrt{2}}}{2}$.

分析 求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的方程,求出θ的值,從而求出sinθ的值即可.

解答 解:f′(x)=ex(cosx+sinx)=$\sqrt{2}$exsin(x+$\frac{π}{4}$),
令f′(θ)=0,解得:θ=2kπ-$\frac{π}{4}$,(k∈Z),
則sinθ=sin(-$\frac{π}{4}$)=-$\frac{\sqrt{2}}{2}$,
故答案為:-$\frac{\sqrt{2}}{2}$.

點評 本題考查了函數(shù)的單調(diào)性、極值問題,考查導(dǎo)數(shù)應(yīng)用,是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知集合A={x|x=k+$\frac{1}{2}$,k∈Z},集合B={x|x=2k+$\frac{3}{2}$,k∈Z},則( 。
A.A=BB.A∩B=∅C.A⊆BD.B⊆A

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知集合A={x∈Z|-1≤x<3},B={1,2,3},則A∩B為( 。
A.{-1,0,1,2}B.{1,2,3}C.{1,2}D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知函數(shù)y=f(x)的圖象上的每一點的縱坐標(biāo)擴大到原來的3倍,橫坐標(biāo)擴大到原來的2倍,然后把所得的圖象沿x軸向左平移$\frac{π}{6}$,這樣得到的曲線和y=2sinx的圖象相同,則已知函數(shù)y=f(x)的解析式為f(x)=$\frac{2}{3}$sin(2x-$\frac{π}{6}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知雙曲線$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的右焦點F(c,0),O為坐標(biāo)原點,以F為圓心,OF為半徑的圓與該雙曲線的交點的橫坐標(biāo)為$\frac{c}{2}$,則該雙曲線的離心率為( 。
A.$\sqrt{2}$B.$\frac{{1+\sqrt{3}}}{2}$C.2D.$\sqrt{3}+1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)函數(shù)f(x)=loga|x-1|在(-∞,1)上單調(diào)遞增,則f(a+2)與f(3)的大小關(guān)系是( 。
A.f(a+2)>f(3)B.f(a+2)<f(3)C.f(a+2)=f(3)D.不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知函數(shù)f(x)=$\left\{\begin{array}{l}2x+1\\ f(x-3)\end{array}$$\begin{array}{l},x≤0\\,x>0\end{array}$,則f(2017)等于( 。
A.-1B.1C.-3D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.平面向量$\overrightarrow a$=(m,1),$\overrightarrow b$=(1,2),若$\overrightarrow a$⊥$\overrightarrow b$,則實數(shù)m的值為-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.柱坐標(biāo)$({4,\frac{π}{6},5})$化為直角坐標(biāo)$(2\sqrt{3},2,5)$,球坐標(biāo)$({4,\frac{π}{3},\frac{π}{2}})$化為直角坐標(biāo)(0,2$\sqrt{3}$,2).

查看答案和解析>>

同步練習(xí)冊答案