取正方體的六個表面的中心,這六個點所構(gòu)成的幾何體的體積記為V1,該正方體的體積為V2,則V1:V2=
 
考點:棱柱、棱錐、棱臺的體積
專題:空間位置關(guān)系與距離
分析:這六個點所構(gòu)成的幾何體是兩個底面為正方形的四棱錐對接而成的圖形,每個四棱錐的底面邊長與棱長都相等,長度是
2
a
2
,由此能求出V1:V2
解答: 解:這六個點所構(gòu)成的幾何體是兩個底面為正方形的四棱錐對接而成的圖形,
每個四棱錐的底面邊長與棱長都相等,長度是
2
a
2
,
∴高度就是
a
2
,
∴每個四棱錐體積就是
1
3
(
2
a
2
)2•(
a
2
)
=
a3
12

兩個四棱錐的體積就是
a3
12
×2=
a3
6

∴這六個點所構(gòu)成的幾何體的體積V1=
a3
6

該正方體的體積V2=a3,
∴V1:V2=
1
6

故答案為:
1
6
點評:本題考查兩個幾何體的體積之比的求法,是中檔題,解題時要認真審題,注意空間思維能力的培養(yǎng).
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

下列結(jié)論成立的是( 。
A、若ac>bc,則a>b
B、若a>b,則a2>b2
C、若a>b,c<d,則a+c>b+d
D、若a>b,c>d,則a-d>b-c

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設復數(shù)z滿足(z+i)i=i-1(i是虛數(shù)單位),則|z|=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系xOy中,已知圓C1:(x-3)2+(y-4)2=1,圓C2:(x+1)2+y2=1;
(1)求過點A(4,6)的圓C1的切線l的方程;
(2)已知圓C3:(x+1)2+y2=9,動圓M半徑為1,圓心M在圓心C3上移動,過圓M上任作圓C2的兩條切線PE,PF,切點為E,F(xiàn),求
C1E
C1F
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
x+1
x-2
,其中x∈[3,5].
(Ⅰ)用定義證明函數(shù)f(x)在[3,5]上單調(diào)遞減;
(Ⅱ)結(jié)合單調(diào)性,求函數(shù)f(x)=
x+1
x-2
在區(qū)間[3,5]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C的中心在原點,焦點在x軸上,F(xiàn)1,F(xiàn)2分別為左、右焦點,離心率為e,半長軸長為a.
(1)若焦距長2c=2,且1、e、
1
4
成等比數(shù)列,求橢圓C的方程;
(2)在(1)的條件下,直線l:ex-y+a=0與x軸、y軸分別相交于M、N 兩點,p是直線l與橢圓C的一個交點,且
MP
MN
,求λ的值;
(3)若不考慮(1),在(2)中,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設橢圓
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點分別為F1、F2,右頂點為A,上頂點為B,已知原點O到直線AB的距離為
6
3
b
(Ⅰ)求橢圓的離心率;
(Ⅱ)設P為橢圓上異于其頂點的一點,以線段PB為直徑的圓經(jīng)過點F1,經(jīng)過點F2的直線l與該圓相切,求直線l的斜率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系中,已知曲線C1
x=cosφ
y=sinφ
(φ為參數(shù)),經(jīng)過坐標變換
x′=2x
y′=
3
y
得到曲線C2.A,B是曲線C2上兩點,且OA⊥OB.
(1)求曲線C1,C2的普通方程;
(2)求點O到直線AB的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a>0,b>0,且4a-b≥0,若函數(shù)f(x)=
1
3
ax3+x2+bx無極值,則
b-2
a+1
的取值范圍為( 。
A、[2
3
-4,4]
B、[2
3
-4,+∞]
C、[-2
3
-4,4]
D、[-2
3
-4,+∞]

查看答案和解析>>

同步練習冊答案