16.已知函數(shù)f(x)=log2(ax+4)在(1,2]上單調(diào)遞減,則實(shí)數(shù)a的值可以是(  )
A.1B.-1C.-2D.-3

分析 根據(jù)復(fù)合函數(shù)單調(diào)性之間的關(guān)系進(jìn)行轉(zhuǎn)化求解即可.

解答 解:設(shè)t=ax+4,
若函數(shù)f(x)=log2(ax+4)在(1,2]上單調(diào)遞減,
則t=ax+4在(1,2]上單調(diào)遞減且當(dāng)x=2時(shí),t>0,
即$\left\{\begin{array}{l}{a<0}\\{2a+4>0}\end{array}\right.$,即$\left\{\begin{array}{l}{a<0}\\{a>-2}\end{array}\right.$,得-2<a<0,
則只有a=-1滿足條件.
故選:B.

點(diǎn)評(píng) 本題主要考查函數(shù)單調(diào)性的判斷和應(yīng)用,根據(jù)復(fù)合函數(shù)單調(diào)性之間的關(guān)系進(jìn)行轉(zhuǎn)化是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.若單位向量$\overrightarrow$與向量$\overrightarrow{a}$=(2,1)同向,則$\overrightarrow$=( 。
A.(-$\frac{2\sqrt{5}}{5}$,-$\frac{\sqrt{5}}{5}$)B.($\frac{\sqrt{5}}{5}$,$\frac{2\sqrt{5}}{5}$)C.(-$\frac{\sqrt{5}}{5}$,-$\frac{2\sqrt{5}}{5}$)D.($\frac{2\sqrt{5}}{5}$,$\frac{\sqrt{5}}{5}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.?dāng)?shù)列{an}中,a1=a(a∈R),an+1=$\frac{2{a}_{n}^{2}}{4{a}_{n}-1}$(n∈N*
(Ⅰ)若對(duì)任意的n∈N*,都有an+1>$\frac{1}{2}$,求實(shí)數(shù)a的取值范圍;
(Ⅱ)記數(shù)列{an}的前n項(xiàng)和是Sn,若a=1,求證:Sn<$\frac{{n}^{2}}{4}$+1(n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.過(guò)拋物線y2=4x的焦點(diǎn)F作斜率為1的直線,交拋物線于A、B兩點(diǎn),若$\overrightarrow{AF}$=λ$\overrightarrow{FB}$(λ>1),則λ等于(  )
A.$\sqrt{2}$+1B.$\sqrt{3}$+1C.$\sqrt{5}$+1D.2$\sqrt{2}$+3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知全集U=R,集合A={-l,0,l,2},B={y|y=2x},圖中陰影部分所表示的集合為(  )
A.{-1,0}B.{l,2}C.{-l}D.{0,1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知變量x,y滿足$\left\{\begin{array}{l}{x-y-2≤0}\\{x+2y-5≥0}\\{y-2≤0}\end{array}\right.$,則2x+y的最大值為( 。
A.$\frac{1}{3}$B.10C.3D.$\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知數(shù)列{an}的前n項(xiàng)和為Sn,a1=3,且對(duì)任意的正整數(shù)n,都有Sn+1=λSn+3n+1,其中常數(shù)λ>0.設(shè)bn=$\frac{a_n}{3^n}$(n∈N*)﹒
(1)若λ=3,求數(shù)列{bn}的通項(xiàng)公式;
(2)若λ≠1且λ≠3,設(shè)cn=an+$\frac{2}{λ-3}×{3^n}$(n∈N*),證明數(shù)列{cn}是等比數(shù)列;
(3)若對(duì)任意的正整數(shù)n,都有bn≤3,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知隨機(jī)變量ξ的分布列為
ξ123
Pp1p2p3
且E(ξ)=2,D(ξ)=$\frac{1}{2}$,則P(-1<ξ<2)=(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{1}{8}$D.$\frac{1}{16}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知圓C:(x-2)2+(y-3)2=1,(0,3)且斜率為k的直線l與圓C有兩個(gè)不同的交點(diǎn)M,N,且$\overrightarrow{OM}$•$\overrightarrow{ON}$=$\frac{84}{5}$,則實(shí)數(shù)k的值為$\frac{1}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案