A. | 1 | B. | -1 | C. | -2 | D. | -3 |
分析 根據(jù)復(fù)合函數(shù)單調(diào)性之間的關(guān)系進(jìn)行轉(zhuǎn)化求解即可.
解答 解:設(shè)t=ax+4,
若函數(shù)f(x)=log2(ax+4)在(1,2]上單調(diào)遞減,
則t=ax+4在(1,2]上單調(diào)遞減且當(dāng)x=2時,t>0,
即$\left\{\begin{array}{l}{a<0}\\{2a+4>0}\end{array}\right.$,即$\left\{\begin{array}{l}{a<0}\\{a>-2}\end{array}\right.$,得-2<a<0,
則只有a=-1滿足條件.
故選:B.
點(diǎn)評 本題主要考查函數(shù)單調(diào)性的判斷和應(yīng)用,根據(jù)復(fù)合函數(shù)單調(diào)性之間的關(guān)系進(jìn)行轉(zhuǎn)化是解決本題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-$\frac{2\sqrt{5}}{5}$,-$\frac{\sqrt{5}}{5}$) | B. | ($\frac{\sqrt{5}}{5}$,$\frac{2\sqrt{5}}{5}$) | C. | (-$\frac{\sqrt{5}}{5}$,-$\frac{2\sqrt{5}}{5}$) | D. | ($\frac{2\sqrt{5}}{5}$,$\frac{\sqrt{5}}{5}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{2}$+1 | B. | $\sqrt{3}$+1 | C. | $\sqrt{5}$+1 | D. | 2$\sqrt{2}$+3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {-1,0} | B. | {l,2} | C. | {-l} | D. | {0,1,2} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | 10 | C. | 3 | D. | $\frac{4}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
ξ | 1 | 2 | 3 |
P | p1 | p2 | p3 |
A. | $\frac{1}{4}$ | B. | $\frac{1}{2}$ | C. | $\frac{1}{8}$ | D. | $\frac{1}{16}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com