【題目】某研究性學(xué)習(xí)小組對春季晝夜溫差大小與某花卉種子發(fā)芽多少之間的關(guān)系進行硏究,他們分別記錄了3月1日至3月5日的每天晝夜溫差與實驗室每天每100顆種子浸泡后的發(fā)芽數(shù),得到如下資料:
日期 | 3月1日 | 3月2日 | 3月3日 | 3月4日 | 3月5日 |
溫差x() | 8 | 11 | 13 | 12 | 10 |
發(fā)芽數(shù)y(顆) | 22 | 27 | 31 | 35 | 26 |
(1)從3月1日至3月5日中任選2天,記發(fā)芽的種子數(shù)分別為m,n,求事件“m,n均不小于27”的概率.
(2)若選取的是3月1日與3月5日的兩組數(shù)據(jù),請根據(jù)3月2日至3月4日的數(shù)據(jù),求出y關(guān)于x的線性回歸方程.
(3)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(2)中所得的線性回歸方程是否可靠?
(參考公式:回歸直線的方程是,其中,)
【答案】(1);(2);(3)該研究所得到的線性回歸方程是可靠的.
【解析】
(1)列出m,n的所有取值情況,求出滿足“m,n均不小于27”基本事件的個數(shù),按照古典概型概率方法,即可求解;
(2)依據(jù)提供的公式,求出各個量,即可求出線性回歸方程;
(3)將代入線性回歸方程,分別求出估值,即可得出結(jié)論.
(1)m,n的所有取值情況有、、、
、、、、、、
、、、、、、
、、、、,
即基本事件總數(shù)為20.設(shè)“m,n均不小于27”為事件A,
則事件A包含的基本事件為、、、
、、,
共6種所以,故事件A的概率為.
(2)由數(shù)據(jù),求得,,
,,
,,
,.
所以y關(guān)于x的線性回歸方程為.
(3)當(dāng)時,,;
同樣,當(dāng)時,,.
所以,該研究所得到的線性回歸方程是可靠的.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), .
(Ⅰ)討論函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)在處取得極值,對, 恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對定義在[0,1]上,并且同時滿足以下兩個條件的函數(shù)f(x)稱為G函數(shù).
①對任意的x∈[0,1],總有f(x)≥0;
②當(dāng)x1≥0,x2≥0,x1+x2≤1時,總有f(x1+x2)≥f(x1)+f(x2)成立.已知函數(shù)g(x)=x2與h(x)=2x﹣b是定義在[0,1]上的函數(shù).
(1)試問函數(shù)g(x)是否為G函數(shù)?并說明理由;
(2)若函數(shù)h(x)是G函數(shù),求實數(shù)b組成的集合.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近期,某超市針對一款飲料推出刷臉支付活動,活動設(shè)置了一段時間的推廣期,由于推廣期內(nèi)優(yōu)惠力度較大,吸引越來越多的人開始使用刷臉支付.該超市統(tǒng)計了活動剛推出一周內(nèi)每一天使用刷臉支付的人次,用表示活動推出的天數(shù),表示每天使用刷臉支付的人次,統(tǒng)計數(shù)據(jù)如下表所示:
(1)在推廣期內(nèi),與(均為大于零的常數(shù))哪一個適宜作為刷臉支付的人次關(guān)于活動推出天數(shù)的回歸方程類型?(給出判斷即可,不必說明理由);
(2)根據(jù)(1)的判斷結(jié)果及表中的數(shù)據(jù),求關(guān)于的回歸方程,并預(yù)測活動推出第天使用刷臉支付的人次;
(3)已知一瓶該飲料的售價為元,顧客的支付方式有三種:現(xiàn)金支付、掃碼支付和刷臉支付,其中有使用現(xiàn)金支付,使用現(xiàn)金支付的顧客無優(yōu)惠;有使用掃碼支付,使用掃碼支付享受折優(yōu)惠;有使用刷臉支付,根據(jù)統(tǒng)計結(jié)果得知,使用刷臉支付的顧客,享受折優(yōu)惠的概率為,享受折優(yōu)惠的概率為,享受折優(yōu)惠的概率為.根據(jù)所給數(shù)據(jù)估計購買一瓶該飲料的平均花費.
參考數(shù)據(jù):其中,
參考公式:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計公式分別為:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】商家通常依據(jù)“樂觀系數(shù)準(zhǔn)則”確定商品銷售價格,及根據(jù)商品的最低銷售限價a,最高銷售限價b(b>a)以及常數(shù)x(0<x<1)確定實際銷售價格c=a+x(b﹣a),這里,x被稱為樂觀系數(shù).
經(jīng)驗表明,最佳樂觀系數(shù)x恰好使得(c﹣a)是(b﹣c)和(b﹣a)的等比中項,據(jù)此可得,最佳樂觀系數(shù)x的值等于 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)對高三年級的學(xué)生進行體質(zhì)測試,已知高三、一班共有學(xué)生30人,測試立定跳遠的成績用莖葉圖表示如下(單位:):
|
|
| 男 |
| 女 |
|
|
|
|
|
7 | 16 | 5 | 7 | 8 | 9 | 9 | ||||
9 | 8 | 17 | 1 | 8 | 4 | 5 | 2 | 9 | ||
3 | 5 | 6 | 18 | 0 | 2 | 7 | 5 | 4 | ||
1 | 2 | 4 | 19 | 0 | 1 | |||||
1 8 5 | 20 21 22 |
男生成績不低于的定義為“合格”,成績低于的定義為“不合格”;女生成績不低于的定義為“合格”,成績低于的定義為“不合格”.
(1) 求女生立定跳遠成績的中位數(shù);
(2) 若在男生中按成績是否合格進行分層抽樣,抽取6個人,求抽取成績“合格”的男生人數(shù);
(3) 若從(2)問所抽取的6人中任選2人,求這2人中恰有1人成績“合格”的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,以原點為極點,軸的正半軸為極軸建立極坐標(biāo)系. 已知曲線的極坐標(biāo)方程為 ,直線 的參數(shù)方程為 (為參數(shù)).
(I)分別求曲線的直角坐標(biāo)方程和直線 的普通方程;
(II)設(shè)曲線和直線相交于兩點,求弦長的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com