【題目】下列命題中正確的是( )
A.若a,b是兩條直線,且a∥b,那么a平行于經(jīng)過b的任何平面
B.若直線a和平面α滿足a∥α,那么a與α內(nèi)的任何直線平行
C.平行于同一條直線的兩個(gè)平面平行
D.若直線a,b和平面α滿足a∥b,a∥α,b不在平面α內(nèi),則b∥α
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校藝術(shù)節(jié)對同一類的四項(xiàng)參賽作品,只評一項(xiàng)一等獎(jiǎng),在評獎(jiǎng)揭曉前,甲、乙、丙、丁四位同學(xué)對這四項(xiàng)參賽作品預(yù)測如下:
甲說:“或作品獲得一等獎(jiǎng)”; 乙說:“作品獲得一等獎(jiǎng)”;
丙說:“,兩項(xiàng)作品未獲得一等獎(jiǎng)”; 丁說:“作品獲得一等獎(jiǎng)”.
若這四位同學(xué)只有兩位說的話是對的,則獲得一等獎(jiǎng)的作品是( )
A. 作品 B. 作品 C. 作品 D. 作品
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,是邊長為3的正方形,平面,,且,.
(1)試在線段上確定一點(diǎn)的位置,使得平面;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱中,平面ABC,,E是BC的中點(diǎn),.
求異面直線AE與所成的角的大;
若G為中點(diǎn),求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在正四面體中,分別是的中點(diǎn),下面四個(gè)結(jié)論:
①//平面
②平面
③平面平面
④平面平面
其中正確結(jié)論的序號是______________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,側(cè)面為鈍角三角形且垂直于底面,,點(diǎn)是的中點(diǎn),,,.
(Ⅰ)求證:平面平面;
(Ⅱ)若直線與底面所成的角為60°,求二面角余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐與三棱錐中,和都是邊長為2的等邊三角形,分別為的中點(diǎn),,.
(Ⅰ)試在平面內(nèi)作一條直線,當(dāng)時(shí),均有平面(作出直線并證明);
(Ⅱ)求兩棱錐體積之和的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)及函數(shù)(a,b,c∈R),若a>b>c且a+b+c=0.
(1)證明:f(x)的圖像與g(x)的圖像一定有兩個(gè)交點(diǎn);
(2)請用反證法證明:;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC的兩條高線所在直線方程為2x-3y+1=0和x+y=0,頂點(diǎn)A(1,2).
求(1)BC邊所在的直線方程;
(2)△ABC的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com