已知 f(α)=
sin(
2
+α)+2sin(π-α)
3cos(
π
2
-α)-cos(π-α)

(Ⅰ)化簡f(α);
(Ⅱ)已知tanα=3,求f(α)的值.
考點:運用誘導(dǎo)公式化簡求值,同角三角函數(shù)基本關(guān)系的運用
專題:計算題,三角函數(shù)的求值
分析:(Ⅰ)運用誘導(dǎo)公式即可將f(α)化簡求值.
(Ⅱ)由同角三角函數(shù)基本關(guān)系的運用可得f(α)=
2sinα-cosα
3sinα+cosα
=
2tanα-1
3tanα+1
,代入已知即可求值.
解答: 解:(Ⅰ)f(α)=
sin(
2
+α)+2sin(π-α)
3cos(
π
2
-α)-cos(π-α)
=
2sinα-cosα
3sinα+cosα
,
(Ⅱ)∵tanα=3,
∴f(α)=
2sinα-cosα
3sinα+cosα
=
2tanα-1
3tanα+1
=
2×3-1
3×3+1
=
1
2
點評:本題主要考查了運用誘導(dǎo)公式化簡求值,同角三角函數(shù)基本關(guān)系的運用,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

y=
x2
x2+2
,x∈[-1,1]的值域為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計算:|(
4
9
)-
1
2
-lg5|+
lg22-lg4+1
-5 1-log52=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:對任意x1,x2∈R,(f(x2)-f(x1))(x2-x1)≥0,則“非p”是(  )
A、存在x1,x2∈R,使(f(x2)-f(x1))(x2-x1)<0
B、對任意x1,x2∈R,都有(f(x2)-f(x1))(x2-x1)≤0
C、存在x1,x2∈R,使(f(x2)-f(x1))(x2-x1)≤0
D、對任意x1,x2∈R,都有(f(x2)-f(x1))(x2-x1)<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合M={x|
x-2
3
+
x-3
2
=
3
x-2
+
2
x-3
},N={x|
x-6
5
+
x-5
6
=
5
x-6
+
6
x-5
},則M∩N=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列五種寫法,其中錯誤寫法的個數(shù)為(  )
(1){0}∈{0,2,3};(2)∅⊆{0};(3){1,2,0}(4)0∈∅;(5)0∩∅=∅
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)經(jīng)過原點的是( 。
A、y=2x-1
B、y=x-1
C、y=log2x
D、y=-x2+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在正三棱柱ABC-A1B1C1中,點D為棱AB的中點,BC=1,AA1=
3

(1)求證:BC1∥平面A1DC;
(2)求三棱錐D-A1B1C 的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lnx+
1
x
+ax,x∈(0,+∞)(a為實常數(shù)).若f(x)在[2,+∞)上是單調(diào)函數(shù),則a的取值范圍是( 。
A、(-∞,-
1
4
]
B、(-∞,-
1
4
]∪[0,+∞)
C、(-∞,0)∪[
1
4
,+∞]
D、(-∞,0)∪(
1
2
,+∞)

查看答案和解析>>

同步練習(xí)冊答案