8.已知拋物線y2=2px(p>0)過定點A(1,1),B,C是拋物線上異于A的兩個動點,且AB⊥AC.
(Ⅰ)求拋物線的方程;
(Ⅱ)求證:直線BC恒過定點,并求出該定點的坐標.

分析 (Ⅰ)根據(jù)拋物線方程將A(1,1)代入,即可求得p的值,寫出拋物線方程;
(Ⅱ)設(shè)出B和C點坐標及直線BC方程,代入拋物線方程,求得關(guān)于y的一元二次方程,求得y1+y2和y1y2的表達式,求得kAB•kAC=-1,即可求得m的值,寫出直線BC方程,
即可證明恒過定點(2,-1).

解答 解:(Ⅰ)由題意得12=2p×1,
∴$p=\frac{1}{2}$,
∴所求拋物線的方程為y2=x.
(Ⅱ)證明:設(shè)B(x1,y1),C(x2,y2),BC:x=my+t,
由$\left\{\begin{array}{l}x=my+t\\{y^2}=x\end{array}\right.$得:y2-my-t=0,△>0,y1+y2=m,y1y2=-t,
由AB⊥AC,
kAB•kAC=$\frac{{y}_{1}-1}{{x}_{1}-1}$•$\frac{{y}_{2}-1}{{x}_{2}-1}$=$\frac{1}{{y}_{1}+1}$•$\frac{1}{{y}_{2}+1}$=-1,
∴y1•y2+y1+y2+1=-1,
∴-t+m=-2,
∴t=m+2,
∴BC:x=m(y+1)+2,
所以直線BC恒過定點(2,-1).

點評 本題考查了直線與拋物線的位置關(guān)系,證明直線AB必過定點時,要熟練掌握其中設(shè)而不求的解題思想,考查韋達定理的運用,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

18.已知f(x)=x2+x+1,g(x-1)=f(x+1),則g(x)=x2+5x+7.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知曲線f(x)=ex-ax-m(m∈R)在點(1,f(1)))處的切線方程為y=(e-1)x+1-a-m.
(1)求f(x)的單調(diào)區(qū)間和極值;
(2)當m=-1時,證明:($\frac{x-lnx}{{e}^{x}}$)f(x)>1-$\frac{1}{{e}^{2}}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.己知直線ax+by-6=0(a>0,b>0)被圓x2+y2-2x-4y=0截得的弦長為2$\sqrt{5}$,則ab的最大值是( 。
A.9B.$\frac{9}{2}$C.4D.$\frac{5}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知拋物線y2=2px(p>0)的焦點坐標為(1,0),過點M(0,2)的直線l與拋物線交于A,B兩點,且直線l與x軸交于點C.
(1)求證:|MC|2=|MA|•|MB|;
(2)設(shè)$\overrightarrow{MA}$=α$\overrightarrow{AC}$,$\overrightarrow{MB}$=$β\overrightarrow{BC}$,試問α+β是否為定值,若是,求出此定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.已知拋物線C:y2=2px(p>0)的焦點為F,若過點F且斜率為1的直線m與拋物線C交于P(x1,2$\sqrt{2}$)、Q(x2,y2)兩點,則y2等于( 。
A.-2B.-2-$\sqrt{2}$C.2$\sqrt{2}$-3D.8-6$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知拋物線C:y2=-2px(p>0)的焦點坐標為F,在拋物線C上存在點M,使得點F關(guān)于M的對稱點恰好在直線1:x+y-2=0上,且|MF|=1.
(1)求拋物線C的方程;
(2)若直線MF與拋物線C的另一個交點為N,點P在y軸上,求$\overrightarrow{PM}$•$\overrightarrow{PN}$的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.如圖為某幾何體的三視圖,則該幾何體的體積為( 。
A.10πB.$\frac{26}{3}π$C.$\frac{56}{3}π$D.24π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.如圖,把一塊邊長是a的正方形鐵片的各角切去大小相同的小正方形,再把它的邊沿著虛線折轉(zhuǎn)作成一個無蓋方底的盒子,問切去的正方形邊長是多少時,才能使盒子的容積最大?

查看答案和解析>>

同步練習冊答案