已知冪函數(shù)f(x)=(m-3)xm,則下列關(guān)于f(x)的說法不正確的是( 。
A、f(x)的圖象過原點(diǎn)
B、f(x)的圖象關(guān)于原點(diǎn)對稱
C、f(x)的圖象關(guān)于y軸對稱
D、f(x)=x4
考點(diǎn):冪函數(shù)的概念、解析式、定義域、值域
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)冪函數(shù)的定義求出f(x)的解析式,判斷四個選項(xiàng)是否正確即可.
解答: 解:∵f(x)=(m-3)xm是冪函數(shù),
∴m-3=1,解得m=4,
∴函數(shù)解析式是f(x)=x4,
且當(dāng)x=0時(shí),y=f(0)=0,即函數(shù)f(x)的圖象過原點(diǎn),
又函數(shù)f(x)的圖象關(guān)于y軸對稱;
∴選項(xiàng)A、C、D正確,B錯誤.
故選:B.
點(diǎn)評:本題考查了冪函數(shù)的定義以及冪函數(shù)的圖象與性質(zhì)的應(yīng)用問題,是基礎(chǔ)題目.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

求證:sin4α-cos4α=sin2α-cos2α

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:?x∈[0,+∞),x≥sinx,命題q:?x∈R,sinx+cosx≥2,則( 。
A、命題p∨q是假命題
B、命題p∧q是真命題
C、命題p∧(¬q)是真命題
D、命題p∧(¬q)是假命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若sin(π-θ)=
1
3
,求
cos(π+θ)
[cos(π-θ)-1]•cosθ
+
cos(θ-2π)
sin(θ-
3
2
π)•cos(θ-π)-sin(θ+
3
2
π)
的值(提示,先化簡,在將sinθ=
1
3
代入化簡式即可)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知tanα=
1
3
.求
1-2sinαcosα
(2cos2α-1)(1-tanα)
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖:已知PA與圓O相切于點(diǎn)A,經(jīng)過點(diǎn)O的割線PBC交圓O于點(diǎn)B,C,∠APC的平分線分別交AB,AC于點(diǎn)D,E,.點(diǎn)G是線段ED的中點(diǎn),AG的延長線與CP相交于點(diǎn)F.
(Ⅰ)證明:AF⊥ED;
(Ⅱ)當(dāng)F恰為PC的中點(diǎn)時(shí),求
PB
PC
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某班5名學(xué)生負(fù)責(zé)校內(nèi)3個不同地段的衛(wèi)生工作,每個地段至少有1名學(xué)生的分配方案共有( 。
A、60種B、90種
C、150種D、240種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列說法:
①命題“若x=kπ(k∈Z),則sin2x=0”的否命題是真命題;
②命題“?x∈R,2 x2+x+1
2
”是假命題且其否定為“?x∈R,2 x2+x+1
2
”;
③已知a,b∈R,則“a>b”是“2a>2b+1“的必要不充分條件.
其中說法正確的是(  )
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若實(shí)數(shù)x,y滿足約束條件
y≥x
x+y≤4
2x-y≥k
,已知(x,y)所表示的平面區(qū)域?yàn)槿切,則實(shí)數(shù)k的取值范圍為
 
,又z=x+2y有最大值8,則實(shí)數(shù)k=
 

查看答案和解析>>

同步練習(xí)冊答案