12.將f(x)=2sin2x的圖象向右平移$\frac{π}{6}$個單位,再向下平移1個單位,得到函數(shù)y=g(x)的圖象,若函數(shù)y=g(x)在區(qū)間(a,b)上含有20個零點,則b-a的最大值為(  )
A.10πB.$\frac{31}{3}$πC.$\frac{32}{3}$πD.11π

分析 利用函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,依次變換即可求得函數(shù)y=g(x)的解析式,由條件根據(jù)正弦函數(shù)的圖象的零點求得b-a的最大值.

解答 解:把函數(shù)y=2sin2x的圖象上所有的點向右平移$\frac{π}{6}$個單位長度,得到y(tǒng)=2sin2(x-$\frac{π}{6}$)=2sin(2x-$\frac{π}{3}$)的圖象,
再將y=2sin(2x-$\frac{π}{3}$)的圖象上所有的點向下平移1個單位長度后所得函數(shù)圖象的解析式是y=2sin(2x-$\frac{π}{3}$)-1.
∵由g(x)=2sin(2x-$\frac{π}{3}$)=1,
∴2x-$\frac{π}{3}$=2kπ+$\frac{π}{6}$或2x-$\frac{π}{3}$=2kπ+$\frac{5π}{6}$,
解得x=kπ+$\frac{π}{4}$或x=kπ+$\frac{7π}{12}$(k∈Z),
函數(shù)g(x)在每個周期上有20個零點,所以共有10個周期,
所以b-a最大值為10T+$\frac{2π}{3}$=$\frac{32π}{3}$.
故選:C.

點評 本題主要考查了三角函數(shù)恒等變換的應(yīng)用,正弦函數(shù)的零點,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.${[{\frac{1+i}{1-i}}]^6}$+$\frac{\sqrt{2}+\sqrt{3}i}{\sqrt{3}-\sqrt{2}i}$=( 。
A.-1-iB.1+iC.-1+iD.1-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.設(shè)函數(shù)f(x)=|2x-1|+x+3,
(1)解不等式f(x)≤5; 
 (2)求函數(shù)y=f(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.在(0,$\frac{π}{2}$)上任取一個數(shù)x,使得1<tanx<2$\sqrt{3}$${∫}_{0}^{1}$xdx的概率是$\frac{1}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知g(x)是定義在R上的奇函數(shù),若函數(shù)f(x)=$\frac{2|x|+g(x)+2}{|x|+1}$(x∈R)有最大值為M,最小值為m,則M+m=( 。
A.$\frac{1}{2}$B.1C.2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.下列命題正確的個數(shù)為( 。
①若函數(shù)f(x)滿足f(x)=f(2-x),則函數(shù)f(x)關(guān)于直線x=1對稱;
②函數(shù)y=f(x-1)與函數(shù)y=f(1-x)關(guān)于直線x=1對稱;
③函數(shù)y=f(x+1)與函數(shù)y=f(1-x)關(guān)于直線x=1對稱;
④垂直于同一直線的兩條直線的位置關(guān)系是平行或相交;
⑤$\overrightarrow{a}$=(1,2)沿x軸向右平移1個單位后$\overrightarrow{a}$=(2,2)
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知拋物線x2=4y上一點M到焦點的距離為3,則點M到x軸的距離為2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.設(shè)a,b,c分別表示△ABC的內(nèi)角A,B,C的所對的邊,$\overrightarrow m$=(a,-$\sqrt{3}$b),$\overrightarrow n$=(sinB,cosA),若a=$\sqrt{7}$,b=2,且$\overrightarrow m$⊥$\overrightarrow n$,則△ABC的面積為$\frac{3\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.(Ⅰ)已知集合A={(x,y)|y=x2+2},B={(x,y)|y=6-x2},求A∩B;
(Ⅱ)已知集合A={y|y=x2+2},B={y|y=6-x2},求A∩B.

查看答案和解析>>

同步練習(xí)冊答案