1.設a,b,c分別表示△ABC的內(nèi)角A,B,C的所對的邊,$\overrightarrow m$=(a,-$\sqrt{3}$b),$\overrightarrow n$=(sinB,cosA),若a=$\sqrt{7}$,b=2,且$\overrightarrow m$⊥$\overrightarrow n$,則△ABC的面積為$\frac{3\sqrt{3}}{2}$.

分析 利用平面向量共線的性質及正弦定理可得sinAsinB-$\sqrt{3}$sinBcosA=0,結合sinB≠0可求tanA,利用特殊角的三角函數(shù)值可求A,利用正弦定理可求sinB,根據(jù)同角三角函數(shù)基本關系式可求cosB,進而利用兩角和的正弦函數(shù)公式可求sinC,利用三角形面積公式即可計算得解.

解答 解:∵$\overrightarrow m⊥\overrightarrow n$,$\overrightarrow m$=(a,-$\sqrt{3}$b),$\overrightarrow n$=(sinB,cosA),
∴asinB-$\sqrt{3}$bcosA=0,
∴sinAsinB-$\sqrt{3}$sinBcosA=0.
又∵sinB≠0,
∴$tanA=\sqrt{3}$.
∵0<A<π,
∴A=$\frac{π}{3}$,
∴$\frac{{\sqrt{7}}}{{sin\frac{π}{3}}}=\frac{2}{sinB},\;\;∴sinB=\frac{{\sqrt{21}}}{7}$.
∵a>b,∴A>B,∴$cosB=\frac{{2\sqrt{7}}}{7}$,
∴$sinC=sin(A+B)=sin({B+\frac{π}{3}})=sinBcos\frac{π}{3}+cosBsin\frac{π}{3}=\frac{{3\sqrt{21}}}{14}$,
∴△ABC的面積為$S=\frac{1}{2}absinC=\frac{{3\sqrt{3}}}{2}$.
故答案為:$\frac{3\sqrt{3}}{2}$.

點評 本題主要考查了平面向量共線的性質,正弦定理,特殊角的三角函數(shù)值,同角三角函數(shù)基本關系式,兩角和的正弦函數(shù)公式,三角形面積公式在解三角形中的綜合應用,考查了計算能力和轉化思想,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

11.已知橢圓C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)與圓C2:x2+y2=b2,若在橢圓C1上存在點P,過P作圓的切線PA,PB,切點為A,B使得∠BPA=$\frac{π}{3}$,則橢圓C1的離心率的取值范圍是[$\frac{\sqrt{3}}{2}$,1).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.將f(x)=2sin2x的圖象向右平移$\frac{π}{6}$個單位,再向下平移1個單位,得到函數(shù)y=g(x)的圖象,若函數(shù)y=g(x)在區(qū)間(a,b)上含有20個零點,則b-a的最大值為( 。
A.10πB.$\frac{31}{3}$πC.$\frac{32}{3}$πD.11π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.函數(shù)f(x)=$\frac{{2}^{x}+a}{{2}^{x}-a}$為奇函數(shù),則實數(shù)a的值為1或-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.如圖,網(wǎng)格紙上小正方形的邊長為1,粗線畫出的是由正方形切割而成的幾何體的三視圖,則該幾何體的體積為( 。
A.$\frac{11}{2}$B.$\frac{13}{2}$C.6D.7

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知函數(shù)f(x)=sin(ωx+φ),其中ω>0,|φ|<$\frac{π}{2}$.
(1)若sin$\frac{3π}{4}$sinφ-cos$\frac{π}{4}$cosφ=0,求φ的值;
(2)在(1)的條件下,函數(shù)f(x)圖象相鄰兩對稱軸之間的距離為$\frac{π}{3}$,求f(x)的解析式;
(3)在(2)條件下,將函數(shù)f(x)左移m個單位后得到偶函數(shù)時,求最小正實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知a,b∈R,比較a2+b2與ab+a+b-1的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.如圖所示的莖葉圖表示甲、乙兩人在5次綜合測評中的成績,其中一個數(shù)字被污損,則甲的平均成績不低于乙的平均成績的概率為$\frac{9}{10}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.設l是一條直線,α,β,γ是不同的平面,則在下列命題中,假命題是④.
①如果α⊥β,那么α內(nèi)一定存在直線平行于β
②如果α不垂直于β,那么α內(nèi)一定不存在直線垂直于β
③如果α⊥γ,β⊥γ,α∩β=l,那么l⊥γ
④如果α⊥β,l與α,β都相交,那么l與α,β所成的角互余.

查看答案和解析>>

同步練習冊答案