分析 根據(jù)函數(shù)奇偶性和單調(diào)性之間的關(guān)系即可求a的取值范圍.
解答 解:∵f(x)=f(-x),f(x)在區(qū)間(-∞,0)上是減函數(shù),
∴f(x)是R上的偶函數(shù),且在(0,+∞)上是增函數(shù).
又∵2a2+a+6=2(a+$\frac{1}{4}$)2+$\frac{49}{8}$>0,3a2-2a+2=3(a-$\frac{1}{3}$)2+$\frac{7}{3}$>0,
∴不等式f(2a2+a+6)<f(3a2-2a+2),等價(jià)為2a2+a+6<3a2-2a+2,
∴a2-3a-4>0,
∴a<-1或a>4,
∴實(shí)數(shù)a的取值集合是(-∞,-1)∪(4,+∞)
故答案為(-∞,-1)∪(4,+∞).
點(diǎn)評 本題主要考查抽象函數(shù)的應(yīng)用,利用函數(shù)奇偶性和單調(diào)性之間的關(guān)系將不等式進(jìn)行轉(zhuǎn)化是解決本題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a≤1 | B. | a≥1 | C. | a<1 | D. | a>1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{9}{2}$ | B. | 9 | C. | 15 | D. | 6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-2,1) | B. | (-1,2) | C. | (-∞,-1)∪(2,+∞) | D. | (-∞,-2)∪(1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 3 | C. | 5 | D. | 8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ①④ | B. | ②③ | C. | ③ | D. | ④ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (1,10) | B. | (10,20) | C. | (10,15) | D. | (20,+∞) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com