10.${∫}_{-1}^{1}$($\sqrt{1-{x}^{2}}$-1)dx=$\frac{π}{2}$-2.

分析 根據(jù)定積分的計算法則和定積分的幾何意義即可求出.

解答 解:${∫}_{-1}^{1}$$\sqrt{1-{x}^{2}}$dx表示以原點為圓心以1為半徑的圓的面積的二分之一,
故${∫}_{-1}^{1}$$\sqrt{1-{x}^{2}}$dx=$\frac{π}{2}$,
${∫}_{-1}^{1}$dx=x|${\;}_{-1}^{1}$=1-(-1)=2,
故${∫}_{-1}^{1}$($\sqrt{1-{x}^{2}}$-1)dx=$\frac{π}{2}$-2,
故答案為:$\frac{π}{2}$-2

點評 本題考查了定積分的計算和定積分的幾何意義,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=(a+1)lnx+x2+1.
(Ⅰ)討論函數(shù)f(x)的單調(diào)性;
(Ⅱ)若對任意不相等的x1,x2∈(0,+∞),恒有|f(x1)-f(x2)≥4|x1-x2|成立,求非負(fù)實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知一質(zhì)點的運(yùn)動方程是s(t)=8-3t2,則該質(zhì)點在[1,1+△t]這段時間內(nèi)的平均速度是( 。
A.-6-3△tB.-6+3△tC.8-3△tD.8+3△t

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.等比數(shù)列{an}中,若a1+a2=3,a5+a6=48,則a3+a4=( 。
A.12B.±12C.6D.±6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.求證:$\sqrt{a-2}-\sqrt{a-3}>\sqrt{a}-\sqrt{a-1}\;(a≥3)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.符號$\sum_{i=1}^n{a_i}$表示數(shù)列{an}的前n項和(即$\sum_{i=1}^n{a_i}={a_1}+{a_2}+…+{a_n}$).已知數(shù)列{an}滿足a1=0,an≤an+1≤an+1(n∈N*),記${S_n}=\sum_{k=1}^n{{{(-1)}^{k-1}}{a^{a_k}}}(0<a<1)$,若S2016=0,則當(dāng)$\sum_{k=1}^{2016}{{a^{a_k}}}$取最小值時,a2016=1007.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知tanα=-$\frac{4}{3}$,α∈($\frac{π}{2}$,π),cosβ=-$\frac{5}{13}$,β是第三象限角,求cos (α-β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.在△ABC中,若$\frac{{{{sin}^2}A+{{sin}^2}B}}{{{{sin}^2}C}}=1$,則△ABC的形狀一定是直角三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=$\frac{1}{3}$x3-$\frac{1}{2}$(a+1)x2-4(a+5)x,g(x)=5lnx+$\frac{1}{2}$ax2-x+5,其中a∈R.
(1)若函數(shù)f(x),g(x)有相同的極值點,求a的值;
(2)若存在兩個整數(shù)m,n,使得函數(shù)f(x),g(x)在區(qū)間(m,n)上都是減函數(shù),求n的最大值.

查看答案和解析>>

同步練習(xí)冊答案