11.已知數(shù)列{an}的前n項(xiàng)和Sn=n2
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)求$\frac{1}{\sqrt{{a}_{1}}+\sqrt{{a}_{2}}}$+$\frac{1}{\sqrt{{a}_{2}}+\sqrt{{a}_{3}}}$+…+$\frac{1}{\sqrt{{a}_{2016}}+\sqrt{{a}_{2017}}}$的值.

分析 (Ⅰ)當(dāng)n=1時(shí),a1=S1=1,當(dāng)n≥2時(shí),Sn-1=(n-1)2,an=Sn-Sn-1=n2-(n-1)2=2n-1,即可求得數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)分母有理化可得$\frac{\sqrt{{a}_{2}}-\sqrt{{a}_{1}}}{{a}_{2}-{a}_{1}}$+$\frac{\sqrt{{a}_{3}}-\sqrt{{a}_{2}}}{{a}_{3}-{a}_{2}}$+…+$\frac{\sqrt{{a}_{2017}}-\sqrt{{a}_{2016}}}{{a}_{2017}-{a}_{2016}}$=$\frac{1}{2}$($\sqrt{{a}_{2017}}$-$\sqrt{{a}_{1}}$),代入即可求得答案.

解答 解:(Ⅰ)當(dāng)n=1時(shí),a1=S1=1,
當(dāng)n≥2時(shí),Sn-1=(n-1)2,
an=Sn-Sn-1=n2-(n-1)2=2n-1,
當(dāng)n=1時(shí),滿足,
∴an=2n-1;
(Ⅱ)$\frac{1}{\sqrt{{a}_{1}}+\sqrt{{a}_{2}}}$+$\frac{1}{\sqrt{{a}_{2}}+\sqrt{{a}_{3}}}$+…+$\frac{1}{\sqrt{{a}_{2016}}+\sqrt{{a}_{2017}}}$,
=$\frac{\sqrt{{a}_{2}}-\sqrt{{a}_{1}}}{{a}_{2}-{a}_{1}}$+$\frac{\sqrt{{a}_{3}}-\sqrt{{a}_{2}}}{{a}_{3}-{a}_{2}}$+…+$\frac{\sqrt{{a}_{2017}}-\sqrt{{a}_{2016}}}{{a}_{2017}-{a}_{2016}}$,
=$\frac{1}{2}$($\sqrt{{a}_{2017}}$-$\sqrt{{a}_{1}}$),
=$\frac{1}{2}$($\sqrt{4033}$-1).

點(diǎn)評(píng) 本題考查數(shù)列的通項(xiàng)公式的求法,考查“裂項(xiàng)法”求數(shù)列的前n項(xiàng)和,考查轉(zhuǎn)化思想,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.函數(shù)y=-$\frac{1}{x}$的單調(diào)區(qū)間表述正確的是( 。
A.在(-∞,1)∪(1,+∞)遞減B.在(-∞,0)和(0,+∞,)遞減
C.在(-∞,1)∪(1,+∞)遞增D.在(-∞,0)和(0,+∞)遞增

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知三棱錐S-ABC外接球的表面積為32π,∠ABC=90°,三棱錐S-ABC的三視圖如圖所示,則其側(cè)視圖的面積的最大值為(  )
A.4B.$4\sqrt{2}$C.8D.$4\sqrt{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,已知2Sn=3n+3.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足an•bn=log3an,求{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知集合A={x|-2≤x≤4},B={x|-m+1≤x≤2m-1}.
(1)若m=2,求A∪B,A∩(∁RB);
(2)若 B⊆A,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.若二次函數(shù)f(x)=x2-2ax+4在(1,+∞)內(nèi)有兩個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍為(2,$\frac{5}{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.在三棱錐P-ABC中,△ABC為等邊三角形,邊長(zhǎng)為$\sqrt{3}$,PA⊥面ABC,PA=2$\sqrt{3}$,則此三棱錐的外接球的表面積為( 。
A.$\frac{16}{3}π$B.$4\sqrt{3}π$C.$\frac{32π}{3}$D.16π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知數(shù)列{an}中,an=$\frac{1}{3}$(an-1+2an-2),(n≥3),其中a1=1,a2=2,求通項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.若(2k2-3k-2)+(k2-2k)i是純虛數(shù),則實(shí)數(shù)k的值等于( 。
A.0或2B.2或$-\frac{1}{2}$C.$-\frac{1}{2}$D.2

查看答案和解析>>

同步練習(xí)冊(cè)答案