分析 通過對an=$\frac{1}{3}$(an-1+2an-2)(n≥3)變形可構(gòu)造首項(xiàng)為1、公比為-$\frac{2}{3}$的等比數(shù)列{an-1-an-2},進(jìn)而利用累加法求和即得結(jié)論.
解答 解:∵an=$\frac{1}{3}$(an-1+2an-2)(n≥3),
∴an-an-1=-$\frac{2}{3}$(an-1-an-2),
又∵a1=1,a2=2,
∴數(shù)列{an-1-an-2}是首項(xiàng)為1、公比為-$\frac{2}{3}$的等比數(shù)列,
∴an-an-1=$(-\frac{2}{3})^{n-2}$,
∴當(dāng)n≥3時,an=(an-an-1)+(an-1-an-2)+(an-2-an-3)+…+(a3-a2)+(a2-a1)+a1
=$(-\frac{2}{3})^{n-2}$+$(-\frac{2}{3})^{n-3}$+…+$(-\frac{2}{3})^{1}$+$(-\frac{2}{3})^{0}$+1
=$\frac{1-(-\frac{2}{3})^{n-1}}{1-(-\frac{2}{3})}$+1
=$\frac{8}{5}$-$\frac{3}{5}$$(-\frac{2}{3})^{n-1}$,
又∵a1=1,a2=2滿足上式,
∴通項(xiàng)公式an=$\frac{8}{5}$-$\frac{3}{5}$$(-\frac{2}{3})^{n-1}$.
點(diǎn)評 本題考查數(shù)列的通項(xiàng),考查累加法求和,對表達(dá)式的靈活變形是解決本題的關(guān)鍵,注意解題方法的積累,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 圓內(nèi) | B. | 圓上 | C. | 圓外 | D. | 不知道 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | -1 | C. | 2 | D. | -2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com