分析 (1)通過$2{S_n}={3^n}+3$可知$2{a_n}=2{S_n}-2{S_{n-1}}={3^n}-{3^{n-1}}$,化簡可知${a_n}={3^{n-1}}$,進而驗證當(dāng)n=1時是否成立即可;
(2)通過(1)即anbn=log3an可知當(dāng)n>1時${b_n}={3^{1-n}}{log_3}{3^{n-1}}=({n-1})•{3^{1-n}}$,利用錯位相減法計算可知${T_n}=\frac{13}{12}+\frac{6n+3}{{4×{3^n}}}$,進而檢驗當(dāng)n=1時是否成立即可.
解答 解:(1)因為$2{S_n}={3^n}+3$,所以,2a1=3+3,故a1=3,
當(dāng)n>1時,$2{S_{n-1}}={3^{n-1}}+3$,
此時,$2{a_n}=2{S_n}-2{S_{n-1}}={3^n}-{3^{n-1}}$,即${a_n}={3^{n-1}}$,
所以,${a_n}=\left\{{\begin{array}{l}{3,n=1}\\{{3^{n-1}},n>1}\end{array}}\right.$.
(2)因為anbn=log3an,所以${b_1}=\frac{1}{3}$,
當(dāng)n>1時,${b_n}={3^{1-n}}{log_3}{3^{n-1}}=({n-1})•{3^{1-n}}$,
所以${T_1}={b_1}=\frac{1}{3}$,
當(dāng)n>1時,${T_n}={b_1}+{b_2}+{b_3}+…+{b_n}=\frac{1}{3}+({1×{3^{-1}}+2×{3^{-2}}+…+({n-1}){3^{1-n}}})$.
所以$3{T_n}=1+({1×{3^0}+2×{3^{-1}}+…+({n-1}){3^{2-n}}})$,
兩式相減,得$2{T_n}=\frac{2}{3}+({{3^0}+{3^{-1}}+{3^{2-n}}})-({n-1})•{3^{1-n}}=\frac{2}{3}+\frac{{1-{3^{1-n}}}}{{1-{3^{-1}}}}-({n-1})•{3^{1-n}}=\frac{13}{6}-\frac{6n+3}{{2×{3^n}}}$,
所以${T_n}=\frac{13}{12}+\frac{6n+3}{{4×{3^n}}}$,經(jīng)檢驗,n=1時也適合,
綜上可得:${T_n}=\frac{13}{12}+\frac{6n+3}{{4×{3^n}}}$.
點評 本題考查數(shù)列的通項及前n項和,考查錯位相減法,考查分類討論的思想,注意解題方法的積累,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com