1.函數(shù)y=-$\frac{1}{x}$的單調(diào)區(qū)間表述正確的是( 。
A.在(-∞,1)∪(1,+∞)遞減B.在(-∞,0)和(0,+∞,)遞減
C.在(-∞,1)∪(1,+∞)遞增D.在(-∞,0)和(0,+∞)遞增

分析 函數(shù)y=-$\frac{1}{x}$是不連續(xù)函數(shù),利用反比例函數(shù)的圖象,即可得出結(jié)論.

解答 解:函數(shù)y=-$\frac{1}{x}$是不連續(xù)函數(shù),在(-∞,0)和(0,+∞,)遞增,
故選:D.

點(diǎn)評(píng) 本題的關(guān)鍵是熟練掌握反比例函數(shù)的單調(diào)性,熟知其單調(diào)區(qū)間的形式,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.請(qǐng)嚴(yán)格用三段論證明:函數(shù)$y=\frac{{{2^x}-1}}{{{2^x}+1}}$是奇函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知定義在R上的函數(shù)f(x)滿足:f(x+y)=f(x)+f(y)+4xy(x,y∈R),f(1)=2.則f(-2)=( 。
A.2B.4C.8D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=4sin$\frac{ωx}{2}$cos$\frac{ωx}{2}$,其中常數(shù)ω>0.
(1)若y=f(x)在[-$\frac{π}{3}$,$\frac{3π}{4}$]上單調(diào)遞增,求ω的取值范圍;
(2)若ω<4,將函數(shù)y=f(x)圖象向左平移$\frac{π}{3}$個(gè)單位,再向上平移1的單位,得到函數(shù)y=g(x)的圖象,且過P($\frac{π}{6},1$),求g(x)的解析式;
(3)在(2)問下,若函數(shù)g(x)在區(qū)間[a,b](a、b∈R且a<b)滿足:y=g(x)在[a,b]上至少含20個(gè)零點(diǎn),在所以滿足上述條件的[a,b]中,求b-a的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.△ABC的內(nèi)角A,B,C對(duì)應(yīng)的三邊分別是a,b,c,已知2(a2-b2)=2accosB+bc.
(Ⅰ)求角A;
(Ⅱ)若點(diǎn)D為BC上一點(diǎn),且BD=2DC,BA⊥AD,求角B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.?dāng)?shù)列{an}滿足a1=10,an+1=an+18n+10(n∈N*)記[x]表示不超過實(shí)數(shù)x的最大整數(shù),則$\lim_{n→∞}$($\sqrt{a_n}$-[${\sqrt{a_n}}$])=( 。
A.1B.$\frac{1}{2}$C.$\frac{1}{3}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若a=${∫}_{0}^{2}$(1-3x2)dx+4,且(x+$\frac{1}{ax}$)n的展開式中第3項(xiàng)的二項(xiàng)式系數(shù)是15,則展開式中所有項(xiàng)系數(shù)之和為(  )
A.-$\frac{1}{64}$B.$\frac{1}{32}$C.$\frac{1}{64}$D.$\frac{1}{128}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.直線L經(jīng)過點(diǎn)A(-3,4),且在x軸上截距是在y軸截距的2倍,求該直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知數(shù)列{an}的前n項(xiàng)和Sn=n2
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)求$\frac{1}{\sqrt{{a}_{1}}+\sqrt{{a}_{2}}}$+$\frac{1}{\sqrt{{a}_{2}}+\sqrt{{a}_{3}}}$+…+$\frac{1}{\sqrt{{a}_{2016}}+\sqrt{{a}_{2017}}}$的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案