11.如圖所示,已知△EAB所在的平面與矩形ABCD所在的平面互相垂直,EA=EB=3,AD=2,∠AEB=60°,則多面體E-ABCD的外接球的表面積為( 。
A.$\frac{16π}{3}$B.C.16πD.64π

分析 設(shè)球心到平面ABCD的距離為d,利用△EAB所在的平面與矩形ABCD所在的平面互相垂直,EA=EB=3,∠AEB=60°,可得E到平面ABCD的距離為$\frac{3\sqrt{3}}{2}$,從而R2=($\frac{\sqrt{4+9}}{2}$)2+d2=12+($\frac{3\sqrt{3}}{2}$-d)2,求出R2=4,即可求出多面體E-ABCD的外接球的表面積.

解答 解:設(shè)球心到平面ABCD的距離為d,則
∵△EAB所在的平面與矩形ABCD所在的平面互相垂直,EA=EB=3,∠AEB=60°,
∴E到平面ABCD的距離為$\frac{3\sqrt{3}}{2}$,
∴R2=($\frac{\sqrt{4+9}}{2}$)2+d2=12+($\frac{3\sqrt{3}}{2}$-d)2,
∴d=$\frac{\sqrt{3}}{2}$,R2=4,
∴多面體E-ABCD的外接球的表面積為4πR2=16π.
故選:C.

點(diǎn)評(píng) 本題考查多面體E-ABCD的外接球的表面積,考查學(xué)生的計(jì)算能力,正確求出多面體E-ABCD的外接球的半徑是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.過原點(diǎn)且與直線$\sqrt{6}x-\sqrt{3}y+1=0$平行的直線l被圓${x^2}+{({y-\sqrt{3}})^2}=7$所截得的弦長(zhǎng)為2$\sqrt{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.為了解人們對(duì)于國家新頒布的“生育二胎放開”政策的熱度,現(xiàn)在某市進(jìn)行調(diào)查,隨機(jī)調(diào)查了50人,他們年齡的頻數(shù)分布及支持“生育二胎”人數(shù)如表:
年齡[5,15)[15,25)[25,35)[35,45)[45,55)[55,65)
頻數(shù)510151055
支持“生育二胎”4512821
(1)由以上統(tǒng)計(jì)數(shù)據(jù)填下面2乘2列聯(lián)表,并問是否有的99%把握認(rèn)為以45歲為分界點(diǎn)對(duì)“生育二胎放開”政策的支持度有差異:
(2)若對(duì)年齡在[5,15),[35,45)的被調(diào)查人中各隨機(jī)選取兩人進(jìn)行調(diào)查,記選中的4人不支持“生育二胎”人數(shù)為ξ,求隨機(jī)變量ξ的分布列及數(shù)學(xué)期望;
年齡不低于45歲的人數(shù)年齡低于45歲的人數(shù)合計(jì)
支持a=c=
不支持b=d=
合計(jì)
參考數(shù)據(jù):
P(K2≥k)0.0500.0100.001
k3.8416.63510.828
K2=$\frac{n(ad-bc)^{2}}{(a+\\;b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知三棱柱ABC-A′B′C′的6個(gè)頂點(diǎn)都在球O的球面上,若$AB=1,AC=\sqrt{3}$,AB⊥AC,$AA'=2\sqrt{3}$,則球O的直徑為( 。
A.2B.$\sqrt{13}$C.$\sqrt{15}$D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知球O的半徑為R,A,B,C三點(diǎn)在球O的球面上,球心O到平面ABC的距離為$\frac{1}{2}$R.AB=AC=2,∠BAC=120°,則球O的表面積為( 。
A.$\frac{16}{9}$πB.$\frac{16}{3}$πC.$\frac{64}{9}$πD.$\frac{64}{3}$π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.如圖,圓柱形容器內(nèi)盛有高度為6cm的水,若放入3個(gè)相同的鐵球(球的半徑與圓柱的底面半徑相同)后,水恰好淹沒最上面的球,則球的半徑為( 。
A.4cmB.3cmC.2cmD.1 cm

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,等腰梯形ABCD中,AB∥CD,DE⊥AB于E,CF⊥AB于F,且AE=BF=EF=2,DE=CF=2.將△AED和△BFC分別沿DE,CF折起,使A,B兩點(diǎn)重合,記為點(diǎn)M,得到一個(gè)四棱錐M-CDEF,點(diǎn)G,N,H分別是MC,MD,EF的中點(diǎn).
(1)求證:GH∥平面DEM;
(2)求證:EM⊥CN;
(3)求直線GH與平面NFC所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若函數(shù)f(x)=$\left\{\begin{array}{l}f(x-4)+1,x>4\\{x^2},0<x<4\end{array}\right.$,則f(2010)=( 。
A.4B.5C.506D.507

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.執(zhí)行如圖所示的程序框圖,則輸出的k的值為( 。
A.7B.6C.5D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案