20.若函數(shù)f(x)=$\left\{\begin{array}{l}f(x-4)+1,x>4\\{x^2},0<x<4\end{array}\right.$,則f(2010)=( 。
A.4B.5C.506D.507

分析 由2010>1,且2010=4×502+2,由分段函數(shù)得f(2010)=f(4×502+2)=f(2)+502×1,再求出f(2),由此能求出結(jié)果.

解答 解:∵函數(shù)f(x)=$\left\{\begin{array}{l}f(x-4)+1,x>4\\{x^2},0<x<4\end{array}\right.$,
∴f(2010)=f(4×502+2)=f(2)+502×1=22+502=506.
故選:C.

點評 本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時要認真審題,注意分段函數(shù)的性質(zhì)的合理運用.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

10.已知長方體長方體ABCD-A1B1C1D1內(nèi)接于球O,AB=1,AD=2,AA1=3,則該球的表面積為( 。
A.12πB.13πC.14πD.15π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.如圖所示,已知△EAB所在的平面與矩形ABCD所在的平面互相垂直,EA=EB=3,AD=2,∠AEB=60°,則多面體E-ABCD的外接球的表面積為( 。
A.$\frac{16π}{3}$B.C.16πD.64π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.在四棱錐P-ABCD中,PB⊥底面ABCD,底面ABCD是邊長為2的正方形,若直線PC與平面PDB所成的角為30°,則四棱錐P-ABCD的外接球的表面積為12π.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.下列說法中:
①兩個有共同起點且相等的向量,其終點一定相同;
②若|$\overrightarrow{a}$|=|$\overrightarrow$|,則|$\overrightarrow{a}$=$\overrightarrow$;
③若非零向量$\overrightarrow{a},\overrightarrow$共線,則$\overrightarrow{a}=\overrightarrow$;
④向量$\overrightarrow{a}=\overrightarrow$,則向量$\overrightarrow{a},\overrightarrow$共線;
⑤由于零向量的方向不確定,故其不能與任何向量平行;
其中正確的序號為①④.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.函數(shù)f(x)=$\frac{x}{1-x}$的單調(diào)增區(qū)間是( 。
A.(-∞,1)B.(1,+∞)C.(-∞,1),(1,+∞)D.(-∞,-1),(1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知函數(shù)f(x)=sin(ωx+φ)-b(ω>0,0<φ<π)的圖象兩相鄰對稱軸之間的距離是$\frac{π}{2}$,若將f(x)的圖象先向右平移$\frac{π}{6}$個單位,再向上平移$\sqrt{3}$個單位,所得函數(shù)g(x)為奇函數(shù).
(1)求f(x)的解析式;     
 (2)求f(x)的對稱軸及單調(diào)區(qū)間;
(3)若對任意x∈[0,$\frac{π}{3}}$],f2(x)-(2+m)f(x)+2+m≤0恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.函數(shù)y=$\sqrt{x(x-1)}$+$\frac{1}{{\sqrt{x}}}$的定義域是( 。
A.{x|x≥0}B.{x|x≥1}C.{x|x>0}∪{0}D.{x|0≤x≤1}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{1-x},x≤1}\\{1-lo{g}_{2}x,x>1}\end{array}\right.$,則滿足f(x)=2的x的值為0.

查看答案和解析>>

同步練習冊答案