12.當(dāng)太陽(yáng)光線與水平面的傾斜角為60°時(shí),要使一根長(zhǎng)為a的細(xì)桿的影子最長(zhǎng),則細(xì)桿與水平地面所成的角為( 。
A.15°B.30°C.45°D.60°

分析 太陽(yáng)光線與地面成60°角為一定值,由最小角定理,可得剛好是使該斜線與光線所成角互余時(shí)才會(huì)使影子最長(zhǎng),即可得解.

解答 解:如圖所示,太陽(yáng)光線CA與地面AB成60°角為一定值,即∠CAB=60°
要使一根長(zhǎng)a米的竹竿BC的影子最長(zhǎng),
由最小角定理,可知影子最長(zhǎng)時(shí),滿足BC⊥AC.
∵∠CAB=60°
∴∠CBA=30°
即細(xì)桿與水平地面所成的角為30°.
故選:B.

點(diǎn)評(píng) 本題考查線面角中的最小角定理,利用數(shù)形結(jié)合是解決本題的關(guān)鍵.,考查學(xué)生們的空間想象能力及把生活中的實(shí)例用數(shù)學(xué)的思想加以解釋,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.如圖所示,在圓柱OO1中,AB,CD是底面圓O的兩條直徑,CC1,DD1是圓柱OO1的兩條母線,且AC=1,BC=CC1=$\sqrt{3}$.
(I) 證明:平面C1CA⊥平面C1CB;
(Ⅱ)在母線DD1上找一點(diǎn)P使得二面角C1-AB-P的余弦值為$\frac{\sqrt{5}}{5}$,并說(shuō)明點(diǎn)P的位置.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知函數(shù)f(x)=eax,g(x)=sinx.
(1)若直線y=f(x)與y=g(x)在x=0處的切線平行,求a,并討論y=f(x)+g(x)在(-1,+∞)上的單調(diào)性;
(2)若對(duì)任意x∈(0,$\frac{π}{2}}$),都有f(${\frac{x}{a}}$)g(x)>kx,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知數(shù)列{an}滿足an+1=2+an(n∈N*),a2=3a5,其前n項(xiàng)和為Sn,若對(duì)于任意的n∈N*,總有Sn≥Sk成立,則|ak|+|ak+1|+…+|a15|=82.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.如圖,已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,離心率為$\frac{\sqrt{2}}{2}$,點(diǎn)A是橢圓C上任意一點(diǎn),且△AF1F2的周長(zhǎng)為2($\sqrt{2}$+1)
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若動(dòng)點(diǎn)B在直線l:y=$\sqrt{2}$上,且OA⊥OB,點(diǎn)O到直線AB的距離為d(A,B),求證:d(A,B)為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.如圖,已知四棱錐P-ABCD中,底面ABCD為矩形,側(cè)棱PA⊥底面ABCD,PA=AB=2,AD=4,M為側(cè)棱PC的中點(diǎn).
(1)求異面直線AM與PB所成角;
(2)求直線AM與平面BPC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.如圖,AB是⊙O的直徑,CB切⊙O于點(diǎn)B,CD切⊙O于點(diǎn)D,交BA延長(zhǎng)線于點(diǎn)E,若ED=$\sqrt{3}$,∠ADE=30°,則△BDC的外接圓的直徑為( 。
A.1B.$\sqrt{3}$C.2D.2$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.函數(shù)f(x)=sinxcosx+$\frac{1}{2}$最小值是0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.在△ABC中,AB=$\sqrt{2}$,點(diǎn)D在邊BC上,BD=2DC,cos∠DAC=$\frac{3\sqrt{10}}{10}$,cos∠C=$\frac{2\sqrt{5}}{5}$.
(1)求$\frac{AC}{DC}$的值;
(2)判斷△ABD的形狀,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案