已知函數(shù),曲線在點處的切線是:
(Ⅰ)求,的值;
(Ⅱ)若在上單調遞增,求的取值范圍
(Ⅰ) ,;(Ⅱ)
解析試題分析:(Ⅰ)先求出已知函數(shù)的導函數(shù),根據(jù)切線方程就可以知道曲線在的函數(shù)值和切線斜率,代入函數(shù)以及其導函數(shù)的解析式求解;(Ⅱ)先由(Ⅰ)得到函數(shù)及其導函數(shù)的只含有一個參數(shù)的解析式,然后根據(jù)導數(shù)與函數(shù)單調性的關系將問題轉化為在上的恒成立問題,進行分類討論解不等式即可
試題解析:解:(Ⅰ) 由已知得, 2分
因為曲線在點處的切線是:,
所以,,即, 6分
(Ⅱ)由(Ⅰ)知,,
因為在上單調遞增,所以在上恒成立 8分
當時,在上單調遞增,
又因為,所以在上恒成立 10分
當時,要使得在上恒成立,那么,
解得 12分
綜上可知, 14分
考點:1、利用導數(shù)研究函數(shù)的切線方程;2、函數(shù)的單調性與導數(shù)的關系3、分類討論思想
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù),其中是自然對數(shù)的底數(shù),.
(1)若,求曲線在點處的切線方程;
(2)若,求的單調區(qū)間;
(3)若,函數(shù)的圖象與函數(shù)的圖象有3個不同的交點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)的導函數(shù)是二次函數(shù),當時,有極值,且極大值為2,.
(1)求函數(shù)的解析式;
(2)有兩個零點,求實數(shù)的取值范圍;
(3)設函數(shù),若存在實數(shù),使得,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設函數(shù)f(x)=+ax-lnx(a∈R).
(Ⅰ)當a=1時,求函數(shù)f(x)的極值;
(Ⅱ)當a≥2時,討論函數(shù)f(x)的單調性;
(Ⅲ)若對任意及任意,∈[1,2],恒有成立,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù),為正常數(shù).
(Ⅰ)若,且,求函數(shù)的單調增區(qū)間;
(Ⅱ)若,且對任意都有,求的的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知
(1)若時,求函數(shù)在點處的切線方程;
(2)若函數(shù)在上是減函數(shù),求實數(shù)的取值范圍;
(3)令是否存在實數(shù),當是自然對數(shù)的底)時,函數(shù)的最小值是3,
若存在,求出的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù).
(1)當時,求函數(shù)的單調區(qū)間;
(Ⅱ)當時,不等式恒成立,求實數(shù)的取值范圍.
(Ⅲ)求證:(,e是自然對數(shù)的底數(shù)).
提示:
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com