17.復(fù)數(shù)z=$\frac{2i}{1+i}$(i為虛數(shù)單位)在復(fù)平面上對(duì)應(yīng)的點(diǎn)位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

分析 利用復(fù)數(shù)的運(yùn)算法則、共軛復(fù)數(shù)的定義、幾何意義即可得出.

解答 解:復(fù)數(shù)z=$\frac{2i}{1+i}$=$\frac{2i(1-i)}{(1+i)(1-i)}$=$\frac{2i(1-i)}{2}$=i+1在復(fù)平面上對(duì)應(yīng)的點(diǎn)(1,1)位于第一象限.
故選:A.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)的運(yùn)算法則、共軛復(fù)數(shù)的定義、幾何意義,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.如圖為三棱錐S-ABC的三視圖,其表面積為( 。
A.16B.8$\sqrt{6}$+6$\sqrt{2}$C.16$\sqrt{6}$D.16+6$\sqrt{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知一個(gè)幾何體的三視圖如圖所示,其中正視圖和俯視圖是全等的等腰直角三角形,則這個(gè)幾何體外接球體積與該幾何體的體積之比為( 。
A.$\frac{3\sqrt{3}}{2}$πB.$\frac{\sqrt{3}}{4}$πC.$\frac{3\sqrt{3}}{4}$πD.$\frac{\sqrt{3}}{8}$π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知點(diǎn)P(x、y)滿足
(1)若x∈{0,1,2,3,4,5},y∈{0,1,2,3,4},則求y≥x的概率.
(2)若x∈[0,5],y∈[0,4],則求x>y的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.如圖,設(shè)區(qū)域D={(x,y)|0≤x≤1,0≤y≤1,向區(qū)域內(nèi)隨機(jī)投一點(diǎn),且投入到區(qū)域內(nèi)任一點(diǎn)都是等可能的,則點(diǎn)落到由曲線y=$\sqrt{x}$與y=x2所圍成陰影區(qū)域內(nèi)的概率是( 。
A.$\frac{1}{6}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.在(2x+$\frac{1}{x^2}}$)6的展開式中,求:
(Ⅰ)第4項(xiàng)的二項(xiàng)式系數(shù);   
(Ⅱ)常數(shù)項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知sinα=$\frac{{\sqrt{5}}}{5}$,sinβ=$\frac{{\sqrt{10}}}{10}$,且α,β均為銳角,則α+β的值為$\frac{π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.雙曲線x2-$\frac{{y}^{2}}{2}$=1的一個(gè)頂點(diǎn)到一條漸近線的距離是( 。
A.$\sqrt{2}$B.$\frac{\sqrt{3}}{3}$C.$\frac{\sqrt{6}}{3}$D.$\frac{2\sqrt{5}}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.復(fù)數(shù)z=$\frac{-3+i}{2+i}$(i是虛數(shù)單位)的共軛復(fù)數(shù)的模是( 。
A.-1+iB.-1-iC.2D.$\sqrt{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案