【題目】某個(gè)命題與正整數(shù)有關(guān),若當(dāng)n=k 時(shí)該命題成立,那么可推得當(dāng) n=k+1 時(shí)該命題也成立,現(xiàn)已知當(dāng) n=4 時(shí)該命題不成立,那么可推得( )
A.當(dāng) n=5 時(shí),該命題不成立
B.當(dāng) n=5 時(shí),該命題成立
C.當(dāng) n=3 時(shí),該命題成立
D.當(dāng) n=3 時(shí),該命題不成立
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】假設(shè)小明家訂了一份報(bào)紙,送報(bào)人可能在早上6:30﹣7:30之間把報(bào)紙送到小明家,小明父親離開家去工作的時(shí)間在早上7:00﹣8:00之間,問小明父親在離開家前能得到報(bào)紙(稱為事件A)的概率是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正四棱柱中,底面邊長,側(cè)棱 的長為4,過點(diǎn)作的垂線交側(cè)棱于點(diǎn),交于點(diǎn).
(1)求證: ⊥平面;
(2)求二面角的余弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)寫出曲線的直角坐標(biāo)方程;
(2)已知點(diǎn)的直角坐標(biāo)為,直線與曲線相交于不同的兩點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】用數(shù)學(xué)歸納法證明“n3+(n+1)3+(n+2)3 , (n∈N+)能被9整除”,要利用歸納法假設(shè)證n=k+1時(shí)的情況,只需展開( ).
A.(k+3)3
B.(k+2)3
C.(k+1)3
D.(k+1)3+(k+2)3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)是定義在R上的奇函數(shù),且當(dāng)x>0時(shí),f(x)=x2+2x.
(Ⅰ)求f(0)的值;
(Ⅱ)求此函數(shù)在R上的解析式;
(Ⅲ)若對(duì)任意的t∈R,不等式f(t+1)+f(m﹣2t2)<0恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知兩個(gè)正數(shù)a,b滿足a+b=1
(1)求證: ;
(2)若不等式 對(duì)任意正數(shù)a,b都成立,求實(shí)數(shù)x的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義域?yàn)?/span>的奇函數(shù)的圖像是一條連續(xù)不斷的曲線,當(dāng)時(shí),;當(dāng)時(shí),,且,則關(guān)于的不等式的解集為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)在定義域單調(diào)遞增,求實(shí)數(shù)的取值范圍;
(2)令, ,討論函數(shù)的單調(diào)區(qū)間;
(3)如果在(1)的條件下, 在內(nèi)恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com