1.將四位八進(jìn)制中的最小數(shù)轉(zhuǎn)化為六進(jìn)制為( 。
A.2120B.3120C.2212D.4212

分析 首先把8進(jìn)制數(shù)字轉(zhuǎn)化成十進(jìn)制數(shù)字,用所給的數(shù)字最后一個數(shù)乘以8的0次方,依次向前類推,相加得到十進(jìn)制數(shù)字,再用這個數(shù)字除以6,倒序取余即得6進(jìn)制數(shù).

解答 解:∵四位八進(jìn)制中的最小數(shù)為:1000(8)
又∵1000(8)=1×83+0×82+0×81+0×80=512(10),
512÷6=85…2
85÷6=14…1
14÷6=2…2
2÷6=0…2
故512(10)=2212(6)
故選:C.

點評 本題考查進(jìn)位制之間的轉(zhuǎn)化,本題涉及到三個進(jìn)位制之間的轉(zhuǎn)化,實際上不管是什么之間的轉(zhuǎn)化,原理都是相同的,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知復(fù)數(shù)z=$\frac{3-ai}{2-i}$的實部為1,則實數(shù)a等于( 。
A.-2B.2C.1D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的左頂點為(-2,0),離心率為$\frac{1}{2}$.
(Ⅰ)求橢圓C的方程;
(Ⅱ)已知直線l過點S(4,0),與橢圓C交于P,Q兩點,點P關(guān)于x軸的對稱點為P′,P′與Q兩點的連線交x軸于點T,當(dāng)△PQT的面積最大時,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)α,β是兩個不同的平面,l,m是兩條不同的直線,以下命題正確的是(  )
A.若l∥α,α∥β,則l∥βB.若l⊥α,α∥β,則l⊥βC.若l⊥α,α⊥β,則l∥βD.若l∥α,α⊥β,則l⊥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)過點(0,$\sqrt{2}$),且滿足a+b=3$\sqrt{2}$.
(1)求橢圓C的方程;
(2)若斜率為$\frac{1}{2}$的直線與橢圓C交于兩個不同點A,B,點M坐標(biāo)為(2,1),設(shè)直線MA與MB的斜率分別為k1,k2,試問k1+k2是否為定值?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.函數(shù)y=sinx2的圖象是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知a≥0,b≥0,求證:$\frac{{a}^{2}+^{2}}{2}$≥($\frac{a+b}{2}$)2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.在區(qū)間[-1,1]上隨機(jī)地取兩個數(shù)a,b,則使得關(guān)于x的方程x2+ax+b=0在(-1,1)和(1,2)內(nèi)各有一個根的概率為(  )
A.$\frac{1}{8}$B.$\frac{1}{4}$C.$\frac{1}{2}$D.$\frac{7}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.等腰三角形ABC的底邊一個端點B(1,-3),頂點A(0,6),求另一個端點C的軌跡方程,并說明軌跡的形狀.

查看答案和解析>>

同步練習(xí)冊答案