3.設(shè)A、B是非空數(shù)集,定義A*B={x|x∈A∪B且x∉A∩B},已知集合A={x|y=2x-x2},B={y|y=2x,x>0},則A*B=(  )
A.[0,1]∪(2,+∞)B.[0,1)∪(2,+∞)C.(-∞,1]D.[0,2]

分析 本題考查的是新定義與集合知識的綜合問題.在解答的過程當(dāng)中可以根據(jù)集合A、B中元素的特點(diǎn)先明確此兩個(gè)集合中的元素,然后根據(jù)給出的定義確定集合A*B的元素即可.

解答 解:由題意,A={x|y=2x-x2}=R,
B={y|y=2x,x>0}={y|y>1}.
∵A*B={x|x∈A∪B且x∉A∩B},
∴A*B=(-∞,1].
故選:C.

點(diǎn)評 本題考查的是新定義與集合知識的綜合問題.在解答的過程當(dāng)中充分體現(xiàn)了函數(shù)定義域和值域的知識、集合與元素的知識以及新定義新規(guī)定套用等知識的應(yīng)用.要著重體會(huì)集合元素具體化和數(shù)形結(jié)合的思想在題目中的應(yīng)用規(guī)律.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.如圖,已知四棱柱ABCD-A1B1C1D1的底面ABCD是矩形,AB=4,AD=3,AA1=5,∠BAA1=∠DAA1=60°,則A1C的長為$\sqrt{85}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.正方體ABCD-A1B1C1D1中,AD1與平面BDD1B1所成的角為30°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知復(fù)數(shù)z=$\frac{{{m^2}-m-6}}{m+3}$+(m2-2m-15)i
(1)m取何實(shí)數(shù)值時(shí),z是實(shí)數(shù)?
(2)m取何實(shí)數(shù)值時(shí),z是純虛數(shù)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知正三棱柱ABC-A1B1C1,點(diǎn)D為AB的中點(diǎn),A1D=CD,
①求二面角A1-CD-B的余弦值.
②求異面直線BC1與A1D所成角的大;
③設(shè)AB=2異面直線BC1與A1D之間的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.己知數(shù)列{an}的前n項(xiàng)和Sn=$\frac{3{n}^{2}-n}{2}$(n∈N*
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)令bn=$\frac{1}{{a}_{n}{a}_{n+1}}$,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.過點(diǎn)A(-4,0)向橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)引兩條切線,切點(diǎn)分別為B、C,若△ABC為正三角形,則當(dāng)ab最大時(shí)橢圓的方程為( 。
A.$\frac{{x}^{2}}{8}$+$\frac{3{y}^{2}}{8}$=1B.$\frac{{x}^{2}}{16}$+$\frac{3{y}^{2}}{16}$=1C.$\frac{{x}^{2}}{9}$+$\frac{4{y}^{2}}{9}$=1D.$\frac{{x}^{2}}{9}$+$\frac{8{y}^{2}}{9}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=x2-2ax+5.
(1)是否存在實(shí)數(shù)a,使f(x)的定義域和值域是[1,a],若存在,求出a,若不存在,說明理由;
(2)若f(x)在x∈[0,1]上有零點(diǎn),求實(shí)數(shù)a的取值范圍;
(3)對任意的x∈[1,a+1],總有|f(x)|≤4,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若函數(shù)f(x)的圖象上存在兩點(diǎn),使得函數(shù)的圖象在這兩點(diǎn)處的切線互相垂直,則稱y=f(x)具有T性質(zhì).寫出下列函數(shù)中,所有具有T性質(zhì)的函數(shù)序號是①.
①y=sinx   ②y=lnx  ③y=ex          ④y=x3

查看答案和解析>>

同步練習(xí)冊答案