6.如果圓(x-a)2+(y-a)2=4上有且僅有兩個點到原點的距離為2,那么實數(shù)a的取值范圍為-2$\sqrt{2}$<a<2$\sqrt{2}$且a≠0.

分析 根據(jù)題意知:圓(x-a)2+(y-a)2=4和以原點為圓心,2為半徑的圓x2+y2=4相交,因此兩圓圓心距大于兩圓半徑之差、小于兩圓半徑之和,列出不等式,解此不等式即可.

解答 解:圓(x-a)2+(y-a)2=4和圓x2+y2=4相交,兩圓圓心距d=$\sqrt{2}$|a|,
∴0<$\sqrt{2}$|a|<4,
∴-2$\sqrt{2}$<a<2$\sqrt{2}$且a≠0.
故答案為:-2$\sqrt{2}$<a<2$\sqrt{2}$且a≠0.

點評 本題體現(xiàn)了轉化的數(shù)學思想,解題的關鍵在于將問題轉化為:圓(x-a)2+(y-a)2=4和圓x2+y2=4相交,屬中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

16.將函數(shù)f(x)=sinωx的圖象向右平移$\frac{π}{4}$個單位長度,所得圖象與g(x)=cosωx的圖象重合,則正數(shù)ω的最小值是6.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知復數(shù)z=-2i+$\frac{1+4i}{i}$,則復數(shù)z的模為(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.已知函數(shù)f(x)=ax5+bx3-x+2(a,b為常數(shù)),且f(-2)=5,則f(2)=( 。
A.-1B.-5C.1D.5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.設23-2x>0.53x-4,則x的取值范圍是(1,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.如圖,在平面直角坐標系xOy中,已知以M為圓心的圓M:x2+y2-12x-14y+60=0及其上一點A(2,4).
(1)設圓N與x軸相切,與圓M外切,且圓心N在直線x=6上,求圓N的標準方程;
(2)設平行于OA的直線l與圓M相交于B,C兩點,且|BC|=|OA|,求直線l的方程;
(3)設點T(t,0)滿足:存在圓M上的兩點P和Q,使得$\overrightarrow{TA}$+$\overrightarrow{TP}$=$\overrightarrow{TQ}$,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.在正方體ABCD-A1B1C1D1中,則異面直線AD1與A1C1所成角的余弦值是$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.今年入秋以來,某市多有霧霾天氣,空氣污染較為嚴重.市環(huán)保研究所對近期每天的空氣污染情況進行調(diào)査研究后發(fā)現(xiàn),每一天中空氣污染指數(shù)與f(x)時刻x(時)的函數(shù)關系為f(x)=|log25(x+1)-a|+2a+1,x∈[0,24],其中a為空氣治理調(diào)節(jié)參數(shù),且a∈(0,1).
(1)若a=$\frac{1}{2}$,求一天中哪個時刻該市的空氣污染指數(shù)最低;
(2)規(guī)定每天中f(x)的最大值作為當天的空氣污染指數(shù),要使該市每天的空氣污染指數(shù)不超過3,則調(diào)節(jié)參數(shù)a應控制在什么范圍內(nèi)?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.函數(shù)f(x)=$\frac{1}{\sqrt{x-2}}$的定義域為(2,+∞).

查看答案和解析>>

同步練習冊答案