11.△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,若cosA=$\frac{2}{3}$,a=$\sqrt{5}$,c=2,則b=3.

分析 由已知及余弦定理可得5=b2+4-$\frac{8b}{3}$,即可解得b的值.

解答 解:因為cosA=$\frac{2}{3}$,a=$\sqrt{5}$,c=2,
由余弦定理的a2=b2+c2-2bccosA,
所以5=b2+4-$\frac{8b}{3}$,解得b=3.
故答案為:3.

點評 本題主要考查了余弦定理在解三角形中的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知i是虛數(shù)單位,則i+|-i|在復(fù)平面上對應(yīng)的點是( 。
A.(1,0)B.(0,1)C.(1,1)D.(1,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.函數(shù)y=$\frac{1}{\sqrt{6+5x-{x}^{2}}}$的單調(diào)遞增區(qū)間是(  )
A.(-∞,$\frac{5}{2}$)B.($\frac{5}{2}$,+∞)C.(-1,$\frac{5}{2}$)D.($\frac{5}{2}$,6)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)為定義在R上的增函數(shù),若對于任意的x,y∈R,都有f(x+y)=f(x)+f(y).
(1)求f(0),并證明f(x)為R上的奇函數(shù);
(2)若f(1)=2,解關(guān)于x的不等式f(x)-f(3-x)<4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.求數(shù)列{$\frac{3n-1}{{2}^{n}}$}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.直線2x-3y+1=0與圓(x-1)2+(y-1)2=4相交于A、B兩點,則|AB|=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知命題p:“?x∈N,都有$\frac{1}{{x}^{2}+x+1}$>0”則¬p為(  )
A.?x∈N,使得$\frac{1}{{x}^{2}+x+1}$≤0B.?x0∈N,使得$\frac{1}{{{x}_{0}}^{2}+{x}_{0}+1}$≤0
C.?x∈N,使得x2+x+1≤0D.?x0∈N,使得x02+x0+1≤0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.若實數(shù)x,y滿足$\left\{\begin{array}{l}x-2≤0\\ y-1≤0\\ x+2y-2≥0\end{array}\right.,則z={2^{x-y}}$的取值范圍是( 。
A.[$\frac{1}{4}$,$\frac{1}{2}$]B.[$\frac{1}{4}$,2]C.[$\frac{1}{2}$,4]D.[2,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.A={x|x2-4x-5≤0},B={x||x|≤2},則A∩B=( 。
A.[-2,5]B.[-2,2]C.[-1,2]D.[-2,-1]

查看答案和解析>>

同步練習(xí)冊答案