8.復(fù)數(shù)z=$\frac{i}{3-i}$的共軛復(fù)數(shù)為$\overline z$,則$\overline z$在復(fù)平面對(duì)應(yīng)的點(diǎn)位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

分析 利用復(fù)數(shù)的除法運(yùn)算法則化簡(jiǎn)求解即可.

解答 解:復(fù)數(shù)z=$\frac{i}{3-i}$=$\frac{i(3+i)}{(3-i)(3+i)}$=$\frac{-1+3i}{10}$,
復(fù)數(shù)z=$\frac{i}{3-i}$的共軛復(fù)數(shù)為$\overline z$=$-\frac{1}{10}-\frac{3}{10}i$,則$\overline z$在復(fù)平面對(duì)應(yīng)的點(diǎn)(-$\frac{1}{10}$,-$\frac{3}{10}$)位于第三象限.
故選:C.

點(diǎn)評(píng) 本題考查復(fù)數(shù)的代數(shù)形式混合運(yùn)算,復(fù)數(shù)的幾何意義,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知cosα=-$\frac{4}{5}$,α為第二象限角,則-$\frac{sin2α}{cosα}$=( 。
A.-$\frac{6}{5}$B.$\frac{6}{5}$C.-$\frac{8}{5}$D.$\frac{8}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.執(zhí)行如圖所示的程序框圖,如果輸入正整數(shù)m,n,滿足n≥m,那么輸出的p等于( 。
A.$C_n^{m-1}$B.$A_n^{m-1}$C.$C_n^m$D.$A_n^m$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.設(shè)向量$\overrightarrow{a}$=(1,m),$\overrightarrow$=(m-1,2),且$\overrightarrow{a}$≠$\overrightarrow$,若($\overrightarrow{a}$-$\overrightarrow$)⊥$\overrightarrow{a}$,則實(shí)數(shù)m=( 。
A.2B.1C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.下列各數(shù)中,純虛數(shù)的個(gè)數(shù)有( 。﹤(gè).
$2+\sqrt{7}$、$\frac{2}{7}i$、0i、5i+8,$i({1-\sqrt{3}})$、$\frac{1}{1+i}$.
A.0個(gè)B.1個(gè)C.2個(gè)D.3個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.設(shè)函數(shù)f(x)=n-1,x∈[n,n+1],n∈N,則函數(shù)g(x)=f(x)-log2x的零點(diǎn)個(gè)數(shù)是( 。
A.1B.2C.3D.無(wú)數(shù)個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.復(fù)數(shù)z=$\frac{2+mi}{1+i}$(m∈R)是純虛數(shù),則m=-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知a、b∈R+,且a+b=1,則$\frac{1}{a}+\frac{1}$≥m,恒成立的實(shí)數(shù)m的最大值是4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知拋物線C:y=$\frac{1}{2}$x2與直線l:y=kx-1(k為常數(shù))沒(méi)有公共點(diǎn),設(shè)點(diǎn)P為直線l上的動(dòng)點(diǎn),且P的橫坐標(biāo)為x0,Q(k,1)為定點(diǎn)
(1)求拋物線C的準(zhǔn)線方程;
(2)若點(diǎn)P與定點(diǎn)Q的連線交拋物線C于M,N兩點(diǎn),求證:|PM|•|ON|=|PN|•|QM|

查看答案和解析>>

同步練習(xí)冊(cè)答案