分析 作出不等式組對(duì)應(yīng)的平面區(qū)域,利用換元法,結(jié)合分式函數(shù)的性質(zhì),利用數(shù)形結(jié)合進(jìn)行求解即可.
解答 解:作出不等式組對(duì)應(yīng)的平面區(qū)域如圖:則x>0,y>0,
則$\frac{(x+y)^{2}+{y}^{2}}{{x}^{2}+2{y}^{2}}$=$\frac{{x}^{2}+2xy+2{y}^{2}}{{x}^{2}+2{y}^{2}}$=1+$\frac{2xy}{{x}^{2}+2{y}^{2}}$=1+$\frac{2•\frac{y}{x}}{1+2•(\frac{y}{x})^{2}}$,
設(shè)k=$\frac{y}{x}$,(k>0),則y=kx
1+$\frac{2•\frac{y}{x}}{1+2•(\frac{y}{x})^{2}}$=1+$\frac{2k}{1+2{k}^{2}}$=1+$\frac{2}{\frac{1}{k}+2k}$,
設(shè)y=2k+$\frac{1}{k}$,
由由圖象知當(dāng)直線y=kx和AB:y=x重合時(shí),k取得最大值,此時(shí)k=1,
當(dāng)y=kx與y=$\frac{1}{4}$x2+$\frac{1}{4}$相切時(shí),直線y=kx的斜率最小,
由y=$\frac{1}{4}$x2+$\frac{1}{4}$=kx,
即x2-4kx+1=0,
則判別式△=16k2-4=0,
得k2=$\frac{1}{4}$,得k=$\frac{1}{2}$或k=-$\frac{1}{2}$(舍),
即$\frac{1}{2}$≤k≤1,
y=2k+$\frac{1}{k}$的導(dǎo)數(shù)y′=2-$\frac{1}{{k}^{2}}$=$\frac{2{k}^{2}-1}{{k}^{2}}$,
則由y′>0得$\frac{\sqrt{2}}{2}$<k≤1,即函數(shù)y=2k+$\frac{1}{k}$為增函數(shù),
由y′<0得$\frac{1}{2}$≤k<$\frac{\sqrt{2}}{2}$,即函數(shù)y=2k+$\frac{1}{k}$為減函數(shù),
故當(dāng)k=$\frac{\sqrt{2}}{2}$時(shí),y取得極小值同時(shí)也是最小值y=$\frac{\sqrt{2}}{2}$×2+$\frac{1}{\frac{\sqrt{2}}{2}}$=$\sqrt{2}+\sqrt{2}$=2$\sqrt{2}$,
當(dāng)k=1時(shí),y=2+1=3,
當(dāng)k=$\frac{1}{2}$時(shí),y=2×$\frac{1}{2}$+2=3,
即y的最大值為3,
則2$\sqrt{2}$≤y≤3,
要求1+$\frac{2}{\frac{1}{k}+2k}$=1+$\frac{2}{y}$的最小值,即求y的最大值,
即當(dāng)y=3時(shí),1+$\frac{2}{\frac{1}{k}+2k}$取得最大值1+$\frac{2}{\frac{1}{k}+2k}$=1+$\frac{2}{y}$=1+$\frac{2}{3}$=$\frac{5}{3}$,
故$\frac{(x+y)^{2}+{y}^{2}}{{x}^{2}+2{y}^{2}}$的最小值為$\frac{5}{3}$,
故答案為:$\frac{5}{3}$
點(diǎn)評(píng) 本題主要考查線性規(guī)劃的應(yīng)用,利用目標(biāo)函數(shù)的幾何意義,利用換元法,結(jié)合分式函數(shù)的性質(zhì)判斷函數(shù)的單調(diào)性是解決本題的關(guān)鍵.綜合性較強(qiáng),難度較大.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 6 | B. | 8 | C. | 10 | D. | 14 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 3-2$\sqrt{2}$ | B. | $\sqrt{2}-1$ | C. | 3+2$\sqrt{2}$ | D. | $\sqrt{2}+1$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -$\frac{7}{25}$ | B. | $\frac{7}{25}$ | C. | $\frac{9}{25}$ | D. | -$\frac{9}{25}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com