16.一個(gè)半球與一個(gè)正四棱錐組成的幾何體的正視圖與俯視圖如圖所示,其中正視圖中的等腰三角形的腰長(zhǎng)為3.若正四棱錐的頂點(diǎn)均在該半球所在球的球面上,則此球的半徑為( 。
A.2B.$\frac{3}{2}$$\sqrt{2}$C.$\frac{12}{5}\sqrt{5}$D.$\sqrt{6}$

分析 利用正視圖中的等腰三角形的腰長(zhǎng)為3,結(jié)合勾股定理,即可得出結(jié)論.

解答 解:由題意,設(shè)球的半徑為r,則9=r2+($\frac{\sqrt{2}}{2}$r)2,
∴r=$\sqrt{6}$.
故選D.

點(diǎn)評(píng) 本題考查三視圖,考查勾股定理,正確轉(zhuǎn)化是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知f(x)是一次函數(shù),若f(f(x))=4x+8,則f(x)的解析式為f(x)=2x+$\frac{8}{3}$,或f(x)=-2x-8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知向量$\overrightarrow m$=(2sinωx,sinωx),$\overrightarrow n$=(cosωx,-2$\sqrt{3}$sinωx)(ω>0),函數(shù)f(x)=$\overrightarrow m$•$\overrightarrow n$+$\sqrt{3}$,直線x=x1,x=x2是函數(shù)y=f(x)的圖象的任意兩條對(duì)稱軸,且|x1-x2|的最小值為$\frac{π}{2}$.
(I)求ω的值;        
(Ⅱ)求函數(shù)f(x)的單調(diào)增區(qū)間;
(Ⅲ)若f(a)=$\frac{2}{3}$,求sin(4a+$\frac{π}{6}$)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若實(shí)數(shù)x,y滿足條件$\left\{\begin{array}{l}x+y≥0\\ x-y+1≥0\\ 0≤x≤1\end{array}\right.$,則3y-x的最大值為( 。
A.6B.5C.4D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.l1,l2表示空間中的兩條不同直線,命題p:“l(fā)1,l2是異面直線”;q:“l(fā)1,l2不相交”,則p是q的( 。
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知圓C的圓心坐標(biāo)為(2,-3),且點(diǎn)(-1,-1)在圓上,則圓C的方程為( 。
A.x2+y2-4x+6y+8=0B.x2+y2-4x+6y-8=0C.x2+y2-4x-6y=0D.x2+y2-4x+6y=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,在底面為直角梯形的四棱錐P-ABCD中,AD∥BC,∠ABC=90°,PD⊥平面ABCD,AD=1,AB=$\sqrt{3}$,BC=4.
(1)求證:BD⊥PC;
(2)若PD=4,設(shè)點(diǎn)E在棱PC上,$\overrightarrow{PE}$=$\frac{1}{4}$$\overrightarrow{PC}$,求三棱錐E-PAB的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.回歸方程$\hat y$=2.5$\hat x$+0.31在樣本(4,1.2)處的殘差為-9.11.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.點(diǎn)M(x,y)到直線l:x=$\frac{25}{4}$的距離和它到定點(diǎn)F(4,0)的距離的比是常數(shù)$\frac{5}{4}$,求點(diǎn)M的軌跡方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案