6.已知函數(shù)f(x)=$\frac{2x+1}{x+1}$,
(1)判斷并用定義證明函數(shù)f(x)在區(qū)間(-1,+∞)上的單調(diào)性;
(2)求該函數(shù)在區(qū)間[1,4]上的最大值和最小值.

分析 (1)利用函數(shù)單調(diào)性的定義來(lái)證明函數(shù)的單調(diào)性;
(2)根據(jù)函數(shù)的單調(diào)性來(lái)求函數(shù)在給定區(qū)間上的最值問(wèn)題.

解答 解:(1)f(x)在(-1,+∞)上為增函數(shù),證明如下:
任取-1<x1<x2,則
f(x1)-f(x2)=$\frac{2{x}_{1}+1}{{x}_{1}+1}-\frac{2{x}_{2}+1}{{x}_{2}+1}$=$\frac{{x}_{1}-{x}_{2}}{({x}_{1}+1)({x}_{2}+1)}$;
∵-1<x1<x2⇒x1+1>0,x2+1>0,x1-x2<0;
∴f(x1)-f(x2)<0⇒f(x1)<f(x2);
所以,f(x)在(-1,+∞)上為增函數(shù).
(2):由(1)知 f(x)[1,4]上單調(diào)遞增,
∴f(x)的最小值為f(1)=$\frac{3}{2}$,最大值f(4)=$\frac{9}{5}$.

點(diǎn)評(píng) 本題主要考查了函數(shù)單調(diào)性的定義、函數(shù)的最值問(wèn)題,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知f(x)=loga$\frac{2+mx}{x-2}$是奇函數(shù)(其中a>1)
(1)求m的值;
(2)判斷f(x)在(2,+∞)上的單調(diào)性并證明;
(3)當(dāng)x∈(r,a-2)時(shí),f(x)的取值范圍恰為(1,+∞),求a與r的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.以橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的中心O為圓心,$\sqrt{{a}^{2}+^{2}}$為半徑的圓稱為該橢圓的“準(zhǔn)圓”.設(shè)橢圓C的左頂點(diǎn)為A,左焦點(diǎn)為F,上頂點(diǎn)為B,且滿足|AB|=2,S△OAB=$\frac{\sqrt{6}}{2}$S△OFB
(1)求橢圓C及其“準(zhǔn)圓”的方程;
(2)對(duì)于給定的橢圓C,若點(diǎn)P是射線y=$\sqrt{3}$x(x≥0)與橢圓C的“準(zhǔn)圓”的交點(diǎn),是否存在以P為一個(gè)頂點(diǎn)的“準(zhǔn)圓”的內(nèi)接矩形,使橢圓C完全落在該矩形所圍成的區(qū)域內(nèi)(包括邊界)?若存在,請(qǐng)寫出作圖方法,并予以證明;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.某幾何體側(cè)視圖與正視圖相同,則它的表面積為(  )
A.12+6πB.16+6πC.16+10πD.8+6π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.執(zhí)行下面的程序框圖,如果輸入的t∈[-2,4],則輸出的s屬于( 。
A.[-4,6]B.[-3,6]C.[-6,4]D.[-6,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知函數(shù)f(x)=lnx+ax2+bx(x>0,a∈R,b∈R),
(Ⅰ)若曲線y=f(x)在(1,f(1))處的切線方程為x-2y-2=0,求f(x)的極值;
(Ⅱ)若b=1,是否存在a∈R,使f(x)的極值大于零?若存在,求出a的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.若“x<a”是“|2x-5|≤4”的必要條件,則實(shí)數(shù)a的取值范圍是( 。
A.$({-∞,\frac{1}{2}})$B.$({-∞,\frac{1}{2}}]$C.$({\frac{9}{2},+∞})$D.$[{\frac{9}{2},+∞})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.函數(shù)f(x)對(duì)于x>0有意義,且滿足條件f(2)=1,f(xy)=f(x)+f(y),f(x)是減函數(shù).
(1)證明:f(1)=0
(2)若f(x)+f(x-3)≥2成立,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知橢圓Cl的方程為$\frac{{x}^{2}}{{4}^{2}}$+$\frac{{y}^{2}}{{3}^{2}}$=1,橢圓C2的短軸為C1的長(zhǎng)軸且離心率為$\frac{\sqrt{3}}{2}$.
(I)求橢圓C2的方程;
(Ⅱ)如圖,M、N分別為直線l與橢圓Cl、C2的一個(gè)交點(diǎn),P為橢圓C2與y軸的交點(diǎn),△PON面積為△POM面積的2倍,若直線l的方程為y=kx(k>0),求k的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案