分析 根據(jù)復合函數(shù)單調(diào)性之間的關(guān)系,利用換元法進行求解即可.
解答 解:設t=x2-2x,
則y=($\frac{1}{2}$)t,為減函數(shù),
要求函數(shù)f(x)=($\frac{1}{2}$)${\;}^{{x}^{2}-2x}$的單調(diào)遞減區(qū)間,
則等價為求函數(shù)t=x2-2x的遞增區(qū)間,
∵函數(shù)t=x2-2x的遞增區(qū)間為[1,+∞),
∴函數(shù)f(x)=($\frac{1}{2}$)${\;}^{{x}^{2}-2x}$的單調(diào)遞減區(qū)間為[1,+∞),
故答案為:[1,+∞).
點評 本題主要考查函數(shù)單調(diào)區(qū)間的求解,根據(jù)復合函數(shù)單調(diào)性之間的關(guān)系,利用換元法是解決本題的關(guān)鍵.
科目:高中數(shù)學 來源: 題型:選擇題
A. | a | B. | b | C. | c | D. | d |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | y=x2 | B. | $y={x^{\frac{1}{2}}}$ | C. | y=x-1 | D. | y=x-2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | y=-2x+3 | B. | y=-x2 | C. | y=($\frac{1}{2}$)x | D. | y=x3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com