13.函數(shù)f(x)=($\frac{1}{2}$)${\;}^{{x}^{2}-2x}$的單調(diào)遞減區(qū)間為[1,+∞).

分析 根據(jù)復合函數(shù)單調(diào)性之間的關(guān)系,利用換元法進行求解即可.

解答 解:設t=x2-2x,
則y=($\frac{1}{2}$)t,為減函數(shù),
要求函數(shù)f(x)=($\frac{1}{2}$)${\;}^{{x}^{2}-2x}$的單調(diào)遞減區(qū)間,
則等價為求函數(shù)t=x2-2x的遞增區(qū)間,
∵函數(shù)t=x2-2x的遞增區(qū)間為[1,+∞),
∴函數(shù)f(x)=($\frac{1}{2}$)${\;}^{{x}^{2}-2x}$的單調(diào)遞減區(qū)間為[1,+∞),
故答案為:[1,+∞).

點評 本題主要考查函數(shù)單調(diào)區(qū)間的求解,根據(jù)復合函數(shù)單調(diào)性之間的關(guān)系,利用換元法是解決本題的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

1.已知a=(-$\frac{1}{2}$)-1,b=2${\;}^{-\frac{1}{2}}$,c=($\frac{1}{2}$)${\;}^{-\frac{1}{2}}$,d=2-1,則此四數(shù)中最大的是( 。
A.aB.bC.cD.d

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.下列函數(shù)中既是偶函數(shù),又是在區(qū)間(0,+∞)上單調(diào)遞減的是( 。
A.y=x2B.$y={x^{\frac{1}{2}}}$C.y=x-1D.y=x-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.圓(x-4)2+(y-1)2=5內(nèi)一點P(3,0),過P點弦的中點軌跡方程為(x-3.5)2+(y-0.5)2=0.5.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.某中學經(jīng)市政府批準建分校,建分校工程分三期完成,確定由甲、乙兩家建筑公司承建此工程.規(guī)定每期工程僅由兩公司之一獨立承建,必須在前一期工程完工后再開始后一期工程.已知甲公司獲得第一期、第二期、第三期工程承包權(quán)的概率分別為$\frac{2}{3}$,$\frac{1}{2}$,$\frac{1}{4}$.
(Ⅰ)求甲公司至少獲得一期工程的概率;
(Ⅱ)求甲公司獲得工程期數(shù)比乙公司獲得工程期數(shù)多的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知集合A={x|x(x+1)=0},那么(  )
A.-1∉AB.0∈AC.1∈AD.0∉A

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.下列函數(shù)中,在(0,+∞)上是增函數(shù)的是( 。
A.y=-2x+3B.y=-x2C.y=($\frac{1}{2}$)xD.y=x3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知拋物線y2=2px,過焦點且垂直x軸的弦長為6,拋物線上的兩個動點A(x1,y1)和B(x2,y2),其中x1≠x2且x1+x2=4,線段AB的垂直平分線與x軸交于點C.
(1)求拋物線方程;
(2)試證線段AB的垂直平分線經(jīng)過定點,并求此定點;
(3)求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.如圖,已知長方體ABCD-A1B1C1D1中,E、M、N分別是BC、AE、CD1的中點,AD=AA1=a,AB=2a.求證:MN∥平面ADD1A1

查看答案和解析>>

同步練習冊答案