6.(Ⅰ)計算lg8+3lg5;
(Ⅱ)計算(0.027)${\;}^{-\frac{1}{3}}$-(-$\frac{1}{7}$)-2+(2$\frac{7}{9}$)${\;}^{\frac{1}{2}}$-($\sqrt{2}$-1)0

分析 利用指數(shù)冪的運算性質(zhì)即可得出.

解答 解:(Ⅰ)lg8+3lg5;
原式=lg8+lg53=lg1000=lg103=3
(Ⅱ)(0.027)${\;}^{-\frac{1}{3}}$-(-$\frac{1}{7}$)-2+(2$\frac{7}{9}$)${\;}^{\frac{1}{2}}$-($\sqrt{2}$-1)0
原式=$(\frac{100}{27})^{\frac{1}{3}}$-72+$(\frac{25}{9})^{\frac{1}{2}}$-1
=$\frac{10}{3}$-49+$\frac{5}{3}$-1
=-45

點評 本題考查了指數(shù)冪的運算性質(zhì),屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

1.設函數(shù)y=f(x)是定義在(0,+∞)上的減函數(shù),并且滿足f(2)=1,f($\frac{x}{y}$)=f(x)-f(y).
(1)求f(1)和f($\frac{1}{4}$)的值;
(2)如果f(3x)+f(3x-2)<3,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知圓C:(x-1)2+(y-2)2=4的周長,則點P(3,3)與圓C上的動點M的距離的最大值為( 。
A.$\sqrt{5}$B.$\sqrt{5}-2$C.$\sqrt{5}+2$D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知橢圓E:$\frac{x^2}{a^2}+\frac{x^2}{b^2}=1(a>b>0)$的離心率為$\frac{{\sqrt{3}}}{2}$,左,右焦點為F1,F(xiàn)2,上頂點為P,圓C:(x-2a)2+(y-b)2=4恰好與直線PF1相切.
(1)求圓C的方程;
(2)過橢圓的上頂點是否存在一條直線L與圓C交于A,B兩點,且$\overrightarrow{CA}•\overrightarrow{CB}=\frac{92}{5}$,若存在,求出直線L的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.若復數(shù)z滿足z2+2z=-10,則|z|=( 。
A.$\sqrt{7}$B.$2\sqrt{2}$C.3D.$\sqrt{10}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.函數(shù)f(x)=excosx在點(0,f(0))處的切線斜率為( 。
A.0B.-1C.1D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.在△ABC中,a=1,B=45°,△ABC的面積S=2,則△ABC的外接圓的直徑為5$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.如圖在長方形ABCD中,已知AB=4,BC=2,M,N,P為長方形邊上的中點,Q是邊CD上的點,且CQ=3DQ,求 $\overrightarrow{MQ}$•$\overrightarrow{NP}$的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知函數(shù)f(x)=|x-2|+|x+1|.
(1)作出函數(shù)y=f(x)的圖象;
(2)解不等式|x-2|+|x+1|≥5.

查看答案和解析>>

同步練習冊答案