4.若直線x+y=2與曲線(x-4)2+y2=a2(a>0)有且只有一個(gè)公共點(diǎn),則a的值為( 。
A.1B.$\sqrt{2}$C.2D.4

分析 由直線與圓只有一個(gè)公共點(diǎn),得到直線與圓相切,再由圓的方程找出圓心坐標(biāo)和半徑,利用點(diǎn)到直線的距離公式表示出圓心到直線的距離d,令d=r列出關(guān)于c的方程,求出方程的解即可得到c的值.

解答 解:由圓的方程(x-4)2+y2=a2,得出圓心坐標(biāo)為(4,0),半徑r=a,
根據(jù)題意得:圓心到直線x+y=2的距離d=r,即$\frac{2}{\sqrt{2}}$=a,
解得:a=$\sqrt{2}$.
故選:B.

點(diǎn)評(píng) 此題考查了直線與圓的位置關(guān)系,直線與圓的位置關(guān)系由d與r的關(guān)系來確定(d表示圓心到直線的距離,r表示圓的半徑),當(dāng)d>r時(shí),直線與圓相離;當(dāng)d<r時(shí),直線與圓相交;當(dāng)d=r時(shí),直線與圓相切.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.設(shè)f(x)=$\left\{\begin{array}{l}{x,x∈(-∞,a)}\\{{x}^{2},x∈[a,+∞)}\end{array}\right.$,若f(2)=4,則a的取值范圍為a≤2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知數(shù)列{an}的前n項(xiàng)和為Sn且2Sn=n(n+1),
(1)求數(shù)列{an}的通項(xiàng)公式.
(2)若bn=$\frac{1}{{S}_{n}}$,求{bn}的前n項(xiàng)和Tn
(3)若Cn=2${\;}^{{a}_{n}}$,{Cn}的前n項(xiàng)和Rn,求滿足Rn≥2016的最小整數(shù)n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.求值${∫}_{2}^{4}$($\frac{1}{x}$+x)dx=ln2+6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左,右焦點(diǎn)分別為F1、F2,$\overrightarrow{A{F}_{2}}$=λ$\overrightarrow{{F}_{2}B}$(λ>0),其中A、B為雙曲線右支上的兩點(diǎn).若在△AF1B中,∠F1AB=90°,|F1B|=$\sqrt{2}$|AB|,則雙曲線C的離心率的平方的值為(  )
A.5+2$\sqrt{2}$B.5-2$\sqrt{2}$C.6-$\sqrt{2}$D.6+$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.定義區(qū)間[x1,x2]長度為x2-x1(x2>x1),已知函數(shù)f(x)=$\frac{{(a}^{2}+a)x-1}{{a}^{2}x}$(a∈R,a≠0)的定義域與值域都是[m,n],則區(qū)間[m,n]取最大長度時(shí)a的值是3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.從2名女生,4名男生中選2人參加某項(xiàng)活動(dòng),則抽到的2人恰好男生、女生都有的概率是$\frac{8}{15}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.一個(gè)空心球玩具里面設(shè)計(jì)一個(gè)棱長為4的內(nèi)接正四面體,過正四面體上某一個(gè)頂點(diǎn)所在的三條棱的中點(diǎn)作球的截面,則該截面圓的面積是$\frac{16π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.集合P={x,1},Q={y,1,2},其中x,y∈{1,2,3,…,9},且P⊆Q.把滿足上述條件的一對(duì)有序整數(shù)對(duì)(x,y)作為一個(gè)點(diǎn)的坐標(biāo),則這樣的點(diǎn)的個(gè)數(shù)是(  )
A.14B.21C.9D.15

查看答案和解析>>

同步練習(xí)冊(cè)答案