【題目】已知平行四邊形中,,,,是線段的中點,現(xiàn)沿進行翻折,使得與重合,得到如圖所示的四棱錐.
(1)證明:平面;
(2)若是等邊三角形,求平面和平面所成的銳二面角的余弦值.
【答案】(1)見解析(2)
【解析】
(1)利用余弦定理求得的長,由此利用勾股定理證得,從而得到、,由此證得平面.
(2)建立空間直角坐標系,利用平面和平面的法向量,求得二面角的余弦值.
(1)證明:∵是線段的中點,∴,
在中,由余弦定理得,
,
∴,∵,
∴,∴,,,
∵平面,平面,
∴平面.
(2)取的中點,以為坐標原點,過點與平行的直線為軸,所在直線為軸,所在直線為軸建立如圖所示空間直角坐標系.
設(shè)軸與交于點,
∵,∴,
易知,∴,
則,,,,
,,,,
∵平面,
∴可取平面的法向量,
設(shè)平面的法向量,平面和平面所成的銳二面角為,
則,∴,得,
令,則,從而,
故平面和平面所成的銳二面角的余弦值為.
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)定義在R上的函數(shù)f(x)是最小正周期為2π的偶函數(shù),f'(x)是f(x)的導函數(shù),當x∈[0,π]時,0≤f(x)≤1;當x∈(0,π)且x≠時, ,則函數(shù)y=f(x)-|sinx|在區(qū)間上的零點個數(shù)為( )
A. 4 B. 6 C. 7 D. 8
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知為坐標原點,橢圓:上頂點為,右頂點為,離心率,圓:與直線相切.
(1)求橢圓的標準方程;
(2)若,,為橢圓上的三個動點,直線,,的斜率分別為.
(i)若的中點為,求直線的方程;
(ii)若,證明:直線過定點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】從某大學中隨機選取7名女大學生,其身高x(單位:cm)和體重y(單位:kg)數(shù)據(jù)如下表:
編號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
身高x | 163 | 164 | 165 | 166 | 167 | 168 | 169 |
體重y | 52 | 52 | 53 | 55 | 54 | 56 | 56 |
(1)求y關(guān)于x的回歸方程;
(2)利用(1)中的回歸方程,分析這7名女大學生的身高和體重的變化,并預報一名身高為172cm的女大學生的體重.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)有關(guān)于x的一元二次方程.
(1)若a是從0、1、2、3四個數(shù)中任取的一個數(shù),是從0、1、2三個數(shù)中任取的一個數(shù),求上述方程沒有實根的概率.
(2)若a是從區(qū)間內(nèi)任取的一個數(shù),,求上述方程沒有實根的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知正所在平面垂直平面,且邊在平面內(nèi),過、分別作兩個平面、(與正所在平面不重合),則以下結(jié)論錯誤的是( )
A.存在平面與平面,使得它們的交線和直線所成角為
B.直線與平面所成的角不大于
C.平面與平面所成銳二面角不小于
D.平面與平面所成銳二面角不小于
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】第十四屆全國冬季運動會召開期間,某校舉行了“冰上運動知識競賽”,為了解本次競賽成績情況,從中隨機抽取部分學生的成績(得分均為整數(shù),滿分100分)進行統(tǒng)計,請根據(jù)頻率分布表中所提供的數(shù)據(jù),解答下列問題:
(1)求、、的值及隨機抽取一考生其成績不低于70分的概率;
(2)若從成績較好的3、4、5組中按分層抽樣的方法抽取5人參加“普及冰雪知識”志愿活動,并指定2名負責人,求從第4組抽取的學生中至少有一名是負責人的概率.
組號 | 分組 | 頻數(shù) | 頻率 |
第1組 | 15 | 0.15 | |
第2組 | 35 | 0.35 | |
第3組 | b | 0.20 | |
第4組 | 20 | ||
第5組 | 10 | 0.1 | |
合計 | 1.00 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com