二項式(2x3+
1
x
7的展開式中常數(shù)項為
 
考點:二項式系數(shù)的性質(zhì)
專題:二項式定理
分析:根據(jù)二項式(2x3+
1
x
7的展開式通項公式,求出常數(shù)項對應(yīng)的r值,計算出常數(shù)項即可.
解答: 解:∵二項式(2x3+
1
x
7的展開式中,
Tr+1=
C
r
7
•(2x37-r(
1
x
)
r

=
C
r
7
•27-rx21-3r-
r
2

令21-3r-
r
2
=0,解得r=6;
∴展開式中常數(shù)項為
T6+1=
C
6
7
•27-6=14.
故答案為:14.
點評:本題考查了二項式定理的展開式的應(yīng)用問題,是基礎(chǔ)題目.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)F1、F2分別為雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的左、右焦點,雙曲線上存在一點P使得(|PF1|-|PF2|)2=b2-3ab,則該雙曲線的離心率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A(0,-5),B(0,5),|PA|-|PB|=2a,當(dāng)a=3或5時,P點的軌跡為( 。
A、雙曲線和一條直線
B、雙曲線和兩條直線
C、雙曲線的一支和一條直線
D、雙曲線的一支和一條射線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于函數(shù)f(x),g(x)和區(qū)間D,如果存在x0∈D,使得|f(x0)-g(x0)|≤1,則稱x0是函數(shù)f(x)與g(x)在區(qū)間D上的“親密點”.現(xiàn)給出四對函數(shù):
①f(x)=x2,g(x)=2x-2; ②f(x)=
x
,g(x)=x+2;
③f(x)=ex,g(x)=x+1;  ④f(x)=lnx,g(x)=x
則在區(qū)間(0,+∞)上存在唯一“親密點”的是( 。
A、①③B、③④C、①④D、②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)g(x)=(a+1)x-2+1(a>0)的圖象恒過定點A,且點A又在函數(shù)f(x)=log 
3
(x+a)的圖象.(1)求實數(shù)a的值;   
(2)解不等式f(x)<log 
3
a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

兩不重合平面的法向量分別為
v1
=(1,0,-1),
v2
=(-2,0,2),則這兩個平面的位置關(guān)系是( 。
A、平行B、相交不垂直
C、垂直D、以上都不對

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,若C=30°,AC=3
3
,AB=3,則△ABC的面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的函數(shù)f(x)滿足:f(x+1)=-f(x),且當(dāng)x∈(0,1)時,f(x)=2x-1,則f(log220)的值為( 。
A、
1
4
B、
4
5
C、
5
4
D、-
1
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(-4,3),點A(-1,1)和B(0,-1)在
a
上的射影分別為A1和B1,若
A1B1
=λ
a
,則λ的值是( 。
A、
2
5
B、-
2
5
C、2
D、-2

查看答案和解析>>

同步練習(xí)冊答案