【題目】已知函數(shù)是奇函數(shù).

1)求的值并判斷的單調(diào)性;

2)當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍.

【答案】1)見解析;(2.

【解析】

1)由即可求得的值,再把函數(shù)的解析式分離常數(shù)即可判斷的單調(diào)性;(2)先利用函數(shù)的奇偶性和單調(diào)性把不等式轉(zhuǎn)化為上恒成立,再利用換元法令將不等式進(jìn)一步轉(zhuǎn)化為關(guān)于的一元二次不等式恒成立問(wèn)題,最后把一元二次不等式恒成立問(wèn)題轉(zhuǎn)化為函數(shù)的最值問(wèn)題即可求出實(shí)數(shù)的取值范圍.

1)易知該函數(shù)的定義域?yàn)?/span>,又因?yàn)楹瘮?shù)為奇函數(shù),所以,,此時(shí)上單調(diào)遞減;(2)由函數(shù)為奇函數(shù),不等式可化為,又函數(shù)在上單調(diào)遞減,所以上恒成立,令,不等式可化為上恒成立,此時(shí)不成立,當(dāng)時(shí),不等式可轉(zhuǎn)化為,又上單調(diào)遞減,所以當(dāng)時(shí),有最小值,所以.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)時(shí)都取得極值.

(1)求的值與函數(shù)的單調(diào)區(qū)間;

(2)若對(duì),不等式恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知正三棱柱,,則異面直線所成角的余弦值為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)fx)是定義域?yàn)?/span>R上的奇函數(shù),當(dāng)x0時(shí),fx=x2+2x

1)求fx)的解析式;

2)若不等式ft﹣2+f2t+1)>0成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列,為該數(shù)列的前項(xiàng)和.

(1)寫出數(shù)列的通項(xiàng)公式;

(2)計(jì)算,猜想的表達(dá)式,并用數(shù)學(xué)歸納法證明;

(3)求數(shù)列的前項(xiàng)和的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校進(jìn)行課題實(shí)驗(yàn),乙班為實(shí)驗(yàn)班,甲班為對(duì)比班,甲乙兩班均有50人,一年后對(duì)兩班進(jìn)行測(cè)試,成績(jī)?nèi)缦卤?/span>

甲班成績(jī)

人數(shù)

4

20

15

10

1

乙班成績(jī)

人數(shù)

1

11

23

13

2

(1)現(xiàn)從甲班成績(jī)位于內(nèi)的試卷中抽取9份進(jìn)行試卷分析,請(qǐng)問(wèn)用什么抽樣方法更合理,并寫出最后的抽樣結(jié)果

(2)完成下列列聯(lián)表,并判斷有多大把握認(rèn)為這兩個(gè)班在這次測(cè)試中成績(jī)的差異與實(shí)施課題實(shí)驗(yàn)有關(guān)。

成績(jī)小于100

成績(jī)不小于100

合計(jì)

甲班

50

乙班

50

合計(jì)

36

64

100

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)是定義在R上的奇函數(shù),并且當(dāng)x∈(0,+∞)時(shí),f(x)=2x.

(1)f(log2)的值;

(2)f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某快遞公司收取快遞費(fèi)用的標(biāo)準(zhǔn)是:重量不超過(guò)的包裹收費(fèi)元;重量超過(guò)的包裹,除收費(fèi)元之外,超過(guò)的部分,每超出(不足,按計(jì)算)需再收元.該公司將最近承攬的件包裹的重量統(tǒng)計(jì)如下:

包裹重量(單位:

包裹件數(shù)

公司對(duì)近天,每天攬件數(shù)量統(tǒng)計(jì)如下表:

包裹件數(shù)范圍

包裹件數(shù)

(近似處理)

天數(shù)

以上數(shù)據(jù)已做近似處理,并將頻率視為概率.

(1)計(jì)算該公司未來(lái)天內(nèi)恰有天攬件數(shù)在之間的概率;

(2)(i)估計(jì)該公司對(duì)每件包裹收取的快遞費(fèi)的平均值;

(ii)公司將快遞費(fèi)的三分之一作為前臺(tái)工作人員的工資和公司利潤(rùn),剩余的用作其他費(fèi)用.目前前臺(tái)有工作人員人,每人每天攬件不超過(guò)件,工資元.公司正在考慮是否將前臺(tái)工作人員裁減人,試計(jì)算裁員前后公司每日利潤(rùn)的數(shù)學(xué)期望,并判斷裁員是否對(duì)提高公司利潤(rùn)更有利?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】從某中學(xué)甲、乙兩班各隨機(jī)抽取 名同學(xué),測(cè)量他們的身高(單位: ),所得數(shù)據(jù)用莖葉圖表示如下,由此可估計(jì)甲、乙兩班同學(xué)的身高情況,則下列結(jié)論正確的是( )

A. 甲班同學(xué)身高的方差較大 B. 甲班同學(xué)身高的平均值較大

C. 甲班同學(xué)身高的中位數(shù)較大 D. 甲班同學(xué)身高在 以上的人數(shù)較多

查看答案和解析>>

同步練習(xí)冊(cè)答案