精英家教網 > 高中數學 > 題目詳情
14.如圖,在四棱錐P-ABCD中,底面ABCD為等腰梯形,AD∥BC,PA=AB=BC=CD=2,PD=2$\sqrt{3}$,PA⊥PD,Q為PD的中點.
(Ⅰ)證明:CQ∥平面PAB;
(Ⅱ)若平面PAD⊥底面ABCD,求直線PD與平面AQC所成角的正弦值.

分析 (I)取PA的中點N,連接QN,BN,則可證四邊形BCQN為平行四邊形,得出CQ∥BN,于是CQ∥平面PAB;
(II)取AD的中點M,連接BM;取BM的中點O,連接BO、PO,則可證OB⊥AD,PO⊥平面ABCD,以O為原點建立坐標系,求出 $\overrightarrow{PD}$和平面ACQ的法向量的坐標,即可求出直線PD與平面AQC所成角的正弦值.

解答 (Ⅰ)證明:取PA的中點N,連接QN,BN.
∵Q,N是PD,PA的中點,
∴QN∥AD,且QN=$\frac{1}{2}$AD.
∵PA=2,PD=2$\sqrt{3}$,PA⊥PD,
∴AD=4,
∴BC=$\frac{1}{2}$AD.又BC∥AD,
∴QN∥BC,且QN=BC,
∴四邊形BCQN為平行四邊形,
∴BN∥CQ.又BN?平面PAB,且CQ?平面PAB,
∴CQ∥平面PAB.
(Ⅱ)解:取AD的中點M,連接BM;取BM的中點O,連接BO、PO.
由(Ⅰ)知PA=AM=PM=2,
∴△APM為等邊三角形,
∴PO⊥AM.同理:BO⊥AM.
∵平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,PO?平面PAD,
∴PO⊥平面ABCD.
以O為坐標原點,分別以OB,OD,OP所在直線為x軸,y軸,z軸建立空間直角坐標系,
則D(0,3,0),A(0,-1,0),P(0,0,$\sqrt{3}$),C($\sqrt{3}$,2,0),Q(0,$\frac{3}{2}$,$\frac{\sqrt{3}}{2}$).
∴$\overrightarrow{AC}$=($\sqrt{3}$,3,0),$\overrightarrow{PD}$=(0,3,-$\sqrt{3}$),$\overrightarrow{AQ}$=(0,$\frac{5}{2}$,$\frac{\sqrt{3}}{2}$).
設平面AQC的法向量為$\overrightarrow{n}$=(x,y,z),
∴$\left\{\begin{array}{l}{\sqrt{3}x+3y=0}\\{\frac{5}{2}y+\frac{\sqrt{3}}{2}z=0}\end{array}\right.$,令y=-$\sqrt{3}$得$\overrightarrow{n}$=(3,-$\sqrt{3}$,5).
∴cos<$\overrightarrow{PD}$,$\overrightarrow{n}$>=$\frac{-8\sqrt{3}}{2\sqrt{3}•\sqrt{37}}$=-$\frac{4\sqrt{37}}{37}$.
∴直線PD與平面AQC所成角正弦值為 $\frac{4\sqrt{37}}{37}$.

點評 本題考查了線面平行的判定,空間向量的應用與線面角的計算,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:填空題

4.已知復數z=$\frac{{i+{i^2}+{i^3}+…+{i^{2014}}}}{1+i}$,則復數z的模為1.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

5.非空集合A、B滿足A?B,U為全集,則下列集合中表示空集的(  )
A.A∩BB.UA∩BC.UA∩∁UBD.A∩∁UB

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

2.已知平面向量$\overrightarrow{a}$=(1,-$\sqrt{3}$),$\overrightarrow$=(3,$\sqrt{3}$),則向量$\overrightarrow{a}$與向量$\overrightarrow{a}$+$\overrightarrow$的夾角為60°.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

9.長為4、寬為3的矩形ABCD的外接圓為圓O,在圓O內任意取點M,則點M在矩形ABCD內的概率為$\frac{48}{25π}$.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

19.已知兩點F1(-$\sqrt{3}$,0)和F2($\sqrt{3}$,0),動點P滿足|$\overrightarrow{O{F_1}}$+$\overrightarrow{OP}$|+|$\overrightarrow{O{F_2}}$+$\overrightarrow{OP}$|=4.
(Ⅰ)求動點P的軌跡C的方程;
(Ⅱ)設曲線C上的兩點M,N在x軸上方,且F1M∥F2N,若以MN為直徑的圓恒過點(0,2),求F1M的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

6.若對任意的x1∈[e-1,e],總存在唯一的x2∈[-1,1],使得lnx1-x1+1+a=x22ex2成立,則實數a的取值范圍是(  )
A.[$\frac{2}{e}$,e+1]B.(e+$\frac{1}{e}$-2,e]C.[e-2,$\frac{2}{e}$)D.($\frac{2}{e}$,2e-2]

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

3.已知向量$\overrightarrow{a}$=(1,3),$\overrightarrow$=(sinα,cosα)且$\overrightarrow{a}$∥$\overrightarrow$,則tanα=(  )
A.3B.-3C.$\frac{1}{3}$D.-$\frac{1}{3}$

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

20.定義f″(x)是y=f(x)的導函數y=f′(x)的導函數,若方程f″(x)=0有實數解x0,則稱點(x0,f(x0))為函數y=f(x)的“拐點”.可以證明,任意三次函數f(x)=ax3+bx2+cx+d(a≠0)都有“拐點”和對稱中心,且“拐點”就是其對稱中心,請你根據這一結論判斷下列命題:
①存在有兩個及兩個以上對稱中心的三次函數;
②函數f(x)=x3-3x2-3x+5的對稱中心也是函數$y=tan\frac{π}{2}x$的一個對稱中心;
③存在三次函數h(x),方程h′(x)=0有實數解x0,且點(x0,h(x0))為函數y=h(x)的對稱中心;
④若函數$g(x)=\frac{1}{3}{x^3}-\frac{1}{2}{x^2}-\frac{5}{12}$,則$g(\frac{1}{2016})+g(\frac{2}{2016})+g(\frac{3}{2016})+…+g(\frac{2015}{2016})$=-1007.5.
其中正確命題的序號為②③④(把所有正確命題的序號都填上).

查看答案和解析>>

同步練習冊答案