20.定義f″(x)是y=f(x)的導函數(shù)y=f′(x)的導函數(shù),若方程f″(x)=0有實數(shù)解x0,則稱點(x0,f(x0))為函數(shù)y=f(x)的“拐點”.可以證明,任意三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0)都有“拐點”和對稱中心,且“拐點”就是其對稱中心,請你根據(jù)這一結(jié)論判斷下列命題:
①存在有兩個及兩個以上對稱中心的三次函數(shù);
②函數(shù)f(x)=x3-3x2-3x+5的對稱中心也是函數(shù)$y=tan\frac{π}{2}x$的一個對稱中心;
③存在三次函數(shù)h(x),方程h′(x)=0有實數(shù)解x0,且點(x0,h(x0))為函數(shù)y=h(x)的對稱中心;
④若函數(shù)$g(x)=\frac{1}{3}{x^3}-\frac{1}{2}{x^2}-\frac{5}{12}$,則$g(\frac{1}{2016})+g(\frac{2}{2016})+g(\frac{3}{2016})+…+g(\frac{2015}{2016})$=-1007.5.
其中正確命題的序號為②③④(把所有正確命題的序號都填上).

分析 利用三次函數(shù)對稱中心的定義和性質(zhì)進行判斷①③;分別求出函數(shù)f(x)=x3-3x2-3x+5與函數(shù)$y=tan\frac{π}{2}x$的對稱中心判斷②;求出函數(shù)$g(x)=\frac{1}{3}{x^3}-\frac{1}{2}{x^2}-\frac{5}{12}$的對稱中心,可得g(x)+g(1-x)=-1,進一步求得$g(\frac{1}{2016})+g(\frac{2}{2016})+g(\frac{3}{2016})+…+g(\frac{2015}{2016})$=-1007.5判斷④.

解答 解:∵任何三次函數(shù)的二階導數(shù)都是一次函數(shù),∴任何三次函數(shù)只有一個對稱中心,故①不正確;
由f(x)=x3-3x2-3x+5,得f′(x)=3x2-6x-3,f″(x)=6x-6,由6x-6=0,得x=1,函數(shù)f(x)的對稱中心為(1,0),
又由$\frac{π}{2}x=\frac{kπ}{2},k∈Z$,得x=k,k∈Z,∴f(x)的對稱中心是函數(shù)$y=tan\frac{π}{2}x$的一個對稱中心,故②正確;
∵任何三次函數(shù)都有對稱中心,且“拐點”就是對稱中心,
∴存在三次函數(shù)f′(x)=0有實數(shù)解x0,點(x0,f(x0))為y=f(x)的對稱中心,即③正確;
∵$g(x)=\frac{1}{3}{x^3}-\frac{1}{2}{x^2}-\frac{5}{12}$,
∴g′(x)=x2-x,g''(x)=2x-1,
令g''(x)=2x-1=0,得x=$\frac{1}{2}$,
∵g($\frac{1}{2}$)=$\frac{1}{3}$×($\frac{1}{2}$)3-$\frac{1}{2}$×($\frac{1}{2}$)2-$\frac{5}{12}$=-$\frac{1}{2}$,
∴函數(shù)$g(x)=\frac{1}{3}{x^3}-\frac{1}{2}{x^2}-\frac{5}{12}$的對稱中心是($\frac{1}{2}$,-$\frac{1}{2}$),
∴g(x)+g(1-x)=-1,
∴$g(\frac{1}{2016})+g(\frac{2}{2016})+g(\frac{3}{2016})+…+g(\frac{2015}{2016})$=-1007.5,故④正確.
故答案為:②③④.

點評 本題考查命題的真假判斷與應(yīng)用,主要考查函數(shù)與導數(shù)等知識,考查化歸與轉(zhuǎn)化的數(shù)學思想方法,考查化簡計算能力,求函數(shù)的值以及函數(shù)的對稱性的應(yīng)用,屬于難題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

14.如圖,在四棱錐P-ABCD中,底面ABCD為等腰梯形,AD∥BC,PA=AB=BC=CD=2,PD=2$\sqrt{3}$,PA⊥PD,Q為PD的中點.
(Ⅰ)證明:CQ∥平面PAB;
(Ⅱ)若平面PAD⊥底面ABCD,求直線PD與平面AQC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.等差數(shù)列{an}的前n項和為Sn,若S9=18,則a2+a5+a8=( 。
A.6B.9C.12D.15

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.若sin α=$\frac{\sqrt{5}}{5}$,sin β=$\frac{\sqrt{10}}{10}$,且α,β均為鈍角,求cos(α+β)的值以及α+β的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.命題“?x<0,2x>0”的否定是( 。
A.?x<0,2x≤0B.?x>0,2x≤0C.?x<0,2x>0D.?x<0,2x≤0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知集合$A=\left\{{x\left|{-\frac{π}{4}+2kπ<x<\frac{π}{3}+2kπ,k∈Z}\right.}\right\},B=\left\{{x\left|{{2^{{x^2}-x}}}\right.<4}\right\}$,則A∩B=( 。
A.$({-\frac{π}{4},\frac{π}{3}})$B.$({-\frac{π}{4},2})$C.$({-1,\frac{π}{3}})$D.(-1,2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.如圖所示,在△ABC中,3$\overrightarrow{AD}=2\overrightarrow{AB}$,3$\overrightarrow{AE}=2\overrightarrow{AC}$,AM是BC邊上的中線,且交DE于N,設(shè)$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow$.
(1)用$\overrightarrow{a}$,$\overrightarrow$分別表示向量$\overrightarrow{DN}$,$\overrightarrow{AM}$;
(2)設(shè)∠BAC=θ,tanθ=$\sqrt{15}$,$\overrightarrow{a}$,$\overrightarrow$均為單位向量,求$\overrightarrow{CD}$$•\overrightarrow{AM}$的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知函數(shù)f(x)=$\sqrt{3}$sin2ωx-2sin2ωx的最小正周期為3π.
(1)求函數(shù)f(x)的解析式;
(2)在△ABC中,若f(C)=1,AB=2,2sin2B=cosB+cos(A-C),求BC的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.函數(shù)f(x)=2${\;}^{\frac{1}{2}-x}}$的大致圖象為( 。
A.B.C.D.

查看答案和解析>>

同步練習冊答案