【題目】某商場(chǎng)在促銷期間規(guī)定:商場(chǎng)內(nèi)所有商品按標(biāo)價(jià)的出售,當(dāng)顧客在商場(chǎng)內(nèi)消費(fèi)一定金額后,按如下方案獲得相應(yīng)金額的獎(jiǎng)券:
消費(fèi)金額(元)的范圍 | … | ||||
獲得獎(jiǎng)券的金額(元) | 30 | 60 | 100 | 130 | … |
根據(jù)上述促銷方法,顧客在該商場(chǎng)購(gòu)物可以獲得雙重優(yōu)惠,例如:購(gòu)買標(biāo)價(jià)為400元的商品,則消費(fèi)金額為320元,獲得的優(yōu)惠額為:元,設(shè)購(gòu)買商品得到的優(yōu)惠率=(購(gòu)買商品獲得的優(yōu)惠額)/(商品標(biāo)價(jià)),試問(wèn):
(1)若購(gòu)買一件標(biāo)價(jià)為1000元的商品,顧客得到的優(yōu)惠率是多少?
(2)對(duì)于標(biāo)價(jià)在(元)內(nèi)的商品,顧客購(gòu)買標(biāo)價(jià)為多少元的商品,可得到不小于的優(yōu)惠率?
【答案】(1);(2).
【解析】
本題考查的是不等式的應(yīng)用問(wèn)題.在解答時(shí):
(1)直接根據(jù)購(gòu)買商品得到的優(yōu)惠率,即可獲得問(wèn)題的解答;
(2)由于標(biāo)價(jià)在,(元內(nèi)的商品,其消費(fèi)金額滿足:,所以要結(jié)合消費(fèi)金額(元的范圍進(jìn)行討論,然后解不等式組即可獲得問(wèn)題的解答.
(1)由題意可知:.
故購(gòu)買一件標(biāo)價(jià)為1000元的商品,顧客得到的優(yōu)惠率是.
(2)設(shè)商品的標(biāo)價(jià)為元.
則,消費(fèi)額:.
由已知得(Ⅰ)或。á颍
不等式組(Ⅰ)無(wú)解,不等式組(Ⅱ)的解為.
因此,當(dāng)顧客購(gòu)買標(biāo)價(jià)在,元內(nèi)的商品時(shí),
可得到不小于的優(yōu)惠率.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在各棱長(zhǎng)均為2的正三棱柱中, 分別為棱與的中點(diǎn), 為線段上的動(dòng)點(diǎn),其中, 更靠近,且.
(1)證明: 平面;
(2)若與平面所成角的正弦值為,求異面直線與所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】以三角形邊,,為邊向形外作正三角形,,,則,,三線共點(diǎn),該點(diǎn)稱為的正等角中心.當(dāng)的每個(gè)內(nèi)角都小于120時(shí),正等角中心點(diǎn)P滿足以下性質(zhì):
(1);(2)正等角中心是到該三角形三個(gè)頂點(diǎn)距離之和最小的點(diǎn)(也即費(fèi)馬點(diǎn)).由以上性質(zhì)得的最小值為_________
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知曲線的極坐標(biāo)方程是.以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為軸的正半軸,建立平面直角坐標(biāo)系,直線的參數(shù)方程是(為參數(shù)).
(Ⅰ)將曲線的極坐標(biāo)方程化為直角坐標(biāo)方程;
(Ⅱ)若直線與曲線相交于,兩點(diǎn),且,求直線的傾斜角的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)是直線上一動(dòng)點(diǎn),PA、PB是圓的兩條切線,A、B為切點(diǎn),若四邊形PACB面積的最小值是2,則的值是
A. B. C. 2 D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某群體的人均通勤時(shí)間,是指單日內(nèi)該群體中成員從居住地到工作地的平均用時(shí).某地上班族中的成員僅以自駕或公交方式通勤.分析顯示:當(dāng)中()的成員自駕時(shí),自駕群體的人均通勤時(shí)間為(單位:分鐘),而公交群體的人均通勤時(shí)間不受影響,恒為分鐘,試根據(jù)上述分析結(jié)果回答下列問(wèn)題:
(1)當(dāng)在什么范圍內(nèi)時(shí),公交群體的人均通勤時(shí)間少于自駕群體的人均通勤時(shí)間?
(2)求該地上班族的人均通勤時(shí)間的表達(dá)式;討論的單調(diào)性,并說(shuō)明其實(shí)際意義.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】過(guò)拋物線焦點(diǎn)的直線與拋物線交于,兩點(diǎn),與圓交于,兩點(diǎn),若有三條直線滿足,則的取值范圍為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)是定義在R上的偶函數(shù),且當(dāng)x≥0時(shí),f(x)=x2﹣2x.
(1)求f(0)及f(f(1))的值;
(2)求函數(shù)f(x)的解析式;
(3)若關(guān)于x的方程f(x)﹣m=0有四個(gè)不同的實(shí)數(shù)解,求實(shí)數(shù)m的取值范圍,
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,有一個(gè)長(zhǎng)方體形狀的敞口玻璃容器,底面是邊長(zhǎng)為20cm的正方形,高為30cm,內(nèi)有20cm深的溶液.現(xiàn)將此容器傾斜一定角度(圖②),且傾斜時(shí)底面的一條棱始終在桌面上(圖①、②均為容器的縱截面).
(1)要使傾斜后容器內(nèi)的溶液不會(huì)溢出,角的最大值是多少?
(2)現(xiàn)需要倒出不少于的溶液,當(dāng)時(shí),能實(shí)現(xiàn)要求嗎?請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com