分析 (1)將直線l參數(shù)m消掉,即可將參數(shù)方程轉化為普通方程,利用公式$\left\{\begin{array}{l}{x=ρcosθ}\\{y=ρsinθ}\end{array}\right.$化簡ρsin2θ=2cosθ,得到曲線C的普通方程;
(2)將直線l:轉化成參數(shù)方程代入線C的普通方程,由韋達定理求得t1+t2和t1•t2,將$\frac{1}{{|{PA}|}}$+$\frac{1}{{|{PB}|}}$同分即可求得$\frac{1}{{|{PA}|}}$+$\frac{1}{{|{PB}|}}$的值.
解答 解:(1)依題意得:直線l的普通方程為x-y-3=0,
曲線C的普通方程為y2=2x…(4分)
(2)將直線l的方程化為$\left\{\begin{array}{l}x=1+\frac{{\sqrt{2}}}{2}t\\ y=-2+\frac{{\sqrt{2}}}{2}t\end{array}\right.$(t為參數(shù))代入曲線C:y2=2x,
得:${t^2}-6\sqrt{2}t+4=0$,${t_1}+{t_2}=6\sqrt{2},{t_1}{t_2}=4$,
所以$\frac{1}{{|{PA}|}}+\frac{1}{{|{PB}|}}=\frac{{|{PA}|+|{PB}|}}{{|{PA}|•|{PB}|}}=\frac{{6\sqrt{2}}}{4}=\frac{{3\sqrt{2}}}{2}$,
$\frac{1}{{|{PA}|}}$+$\frac{1}{{|{PB}|}}$=$\frac{3\sqrt{2}}{2}$…(10分)
點評 本題考查了極坐標方程化為直角坐標方程、直線參數(shù)方程的應用、一元二次方程的根與系數(shù)的關系,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{3}{4}$ | B. | $\frac{1}{4}$ | C. | $-\frac{1}{4}$ | D. | $\frac{1}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 8 | B. | 12 | C. | 10 | D. | 15 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -4 | B. | -3 | C. | 3 | D. | 4 |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com