19.已知等差數(shù)列{an}的前n項和為Sn,若a3+a5+a7=24,則S9=( 。
A.36B.72C.C144D.288

分析 根據(jù){an}是等差數(shù)列,a3+a5+a7=24,可得3a5=24,即a5=8.S9=$\frac{{a}_{1}+{a}_{9}}{2}×9$=$\frac{2{a}_{5}}{2}×9$可得答案.

解答 解:由題意,{an}是等差數(shù)列,a3+a5+a7=24,可得3a5=24,即a5=8.
∵S9=$\frac{{a}_{1}+{a}_{9}}{2}×9$,而a5+a5=a1+a9,
∴S9═$\frac{2{a}_{5}}{2}×9$=72,
故選:B.

點評 本題考查了等差數(shù)列的通項公式,考查了等差數(shù)列的前n項和,是基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

9.已知函數(shù)fn(x)=a1x+a2x2+a3x3+…+anxn,且fn(-1)=(-1)nn,n∈N*,設函數(shù)g(n)=$\left\{\begin{array}{l}{{a}_{n},n為奇數(shù)}\\{g(\frac{n}{2}),n為偶數(shù)}\end{array}\right.$,若bn=g(2n+4),n∈N*,則數(shù)列{bn}的前n(n≥2)項和Sn等于$\left\{\begin{array}{l}{6,n=2}\\{{2}^{n}+n,n≥3}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=1,|$\overrightarrow{a}$-$\overrightarrow$|=$\sqrt{3}$,$\overrightarrow{a}$•($\overrightarrow{a}$-$\overrightarrow$)=0,則|$\overrightarrow$-2$\overrightarrow{a}$|=( 。
A.2B.2$\sqrt{3}$C.4D.4$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+x,x≥0}\\{-3x,x<0}\end{array}\right.$,若a[f(a)-f(-a)]>0,則實數(shù)a的取值范圍為(  )
A.(1,+∞)B.(2,+∞)C.(-∞,-1)∪(1,+∞)D.(-∞,-2)∪(2,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知函數(shù) f ( x )=sin(2x+$\frac{π}{3}$)+cos(2x+$\frac{π}{6}$)+2sin x cos x.
(Ⅰ)求函數(shù) f ( x) 圖象的對稱軸方程;
(Ⅱ)將函數(shù) y=f ( x) 的圖象向右平移 $\frac{π}{12}$個單位,再將所得圖象上各點的橫坐標伸長為原來的 4 倍,縱坐標不變,得到函數(shù) y=g ( x) 的圖象,求 y=g ( x) 在[$\frac{π}{3}$,2π]上的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.隨著人口老齡化的到來,我國的勞動力人口在不斷減少,”延遲退休“已經(jīng)成為人們越來越關注的話題,為了解公眾對“延遲退休”的態(tài)度,某校課外研究性學習小組在某社區(qū)隨機抽取了50人進行調(diào)查,將調(diào)查情況進行整理后制成下表:
年齡[20,25)[25,30)[30,35)[35,40)[40,45)
人數(shù)45853
年齡[45,50)[50,55)[55,60)[60,65)[65,70)
人數(shù)67354
經(jīng)調(diào)查年齡在[25,30),[55,60)的被調(diào)查者中贊成人數(shù)分別是3人和2人,現(xiàn)從這兩組的被調(diào)查者中各隨機選取2人,進行跟蹤調(diào)查.
(Ⅰ)求年齡在[25,30)的被調(diào)查者中選取的2人都贊成“延遲退休”的概率;
(Ⅱ)若選中的4人中,不贊成“延遲退休”的人數(shù)為X,求隨機變量X的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.“中國式過馬路”是網(wǎng)友對部分中國人集體闖紅燈現(xiàn)象的一種調(diào)侃,即“湊夠一撮人就可以走了,和紅綠燈無關”,某校研究性學習小組對全校學生按“跟從別人闖紅燈”,“從不闖紅燈”、“帶頭闖紅燈”等三種形式進行調(diào)查,獲得下表數(shù)據(jù):
  跟從別人闖紅燈 從不闖紅燈 帶頭闖紅燈
 男生 980 410 60
 女生 340 15060
用分層抽樣的方法從所有被調(diào)查的人中抽取一個容量為n的樣本,其中在“跟從別人闖紅燈”的人中抽取了66人.
(Ⅰ)求n的值;
(Ⅱ)在所抽取的“帶頭闖紅燈”的人中,在選取2人參加星期天社區(qū)組織的“文明交通”宣傳活動,求這2人中至少有一人是女生的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知f(x)=$\left\{\begin{array}{l}{-2,0<x<1}\\{1,x≥1}\end{array}$在區(qū)間(0,4)內(nèi)任取一個為x,則不等式log2x-(log${\;}_{\frac{1}{4}}$4x-1)f(log3x+1)≤$\frac{7}{2}$的概率為( 。
A.$\frac{1}{3}$B.$\frac{5}{12}$C.$\frac{1}{2}$D.$\frac{7}{12}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知函數(shù)f(x)=$\left\{\begin{array}{l}{x-{x}^{2},x∈[0,1]}\\{-\frac{\sqrt{5}}{5}f(x-1),x∈[1,3]}\end{array}\right.$
(Ⅰ)求f($\frac{5}{2}$)及x∈[2,3]時函數(shù)f(x)的解析式
(Ⅱ)若f(x)≤$\frac{k}{x}$對任意x∈(0,3]恒成立,求實數(shù)k的最小值.

查看答案和解析>>

同步練習冊答案