6.已知函數(shù)f(x)是定義域?yàn)镽的偶函數(shù),當(dāng)x≤0時(shí),f(x)=(x+2)2ex-1,那么函數(shù)f(x)的極值點(diǎn)的個(gè)數(shù)是( 。
A.2B.3C.4D.5

分析 求導(dǎo)數(shù)確定函數(shù)的單調(diào)性,即可得出函數(shù)f(x)的極值點(diǎn)的個(gè)數(shù).

解答 解:當(dāng)x≤0時(shí),f(x)=(x+2)2ex-1,
∴f′(x)=(x+4)(x+2)ex-1,
∴x<-4時(shí),f′(x)>0,-4<x<-2時(shí),f′(x)<0,-2<x≤0時(shí),f′(x)>0,
∴x=-4,-2是函數(shù)的極值點(diǎn),
∵f(x)是定義域?yàn)镽的偶函數(shù),
∴x=2,4是函數(shù)的極值點(diǎn),
又f(0)=$\frac{4}{e}$,x<0遞增,x>0遞減,即為極值點(diǎn).
故選:D.

點(diǎn)評(píng) 本題考查導(dǎo)數(shù)知識(shí)的運(yùn)用,考查函數(shù)的極值點(diǎn),考查學(xué)生分析解決問(wèn)題的能力,確定函數(shù)的單調(diào)性是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知等差數(shù)列{an}中,前n項(xiàng)和為Sn,a1=1,{bn}為等比數(shù)列且各項(xiàng)均為正數(shù),b1=1,且滿足:b2+S2=7,b3+S3=22.
(Ⅰ)求an與bn;
(Ⅱ)記cn=$\frac{{2}^{n-1}•{a}_{n}}{_{n}}$,求{cn}的前n項(xiàng)和Tn;
(Ⅲ)若不等式(-1)n•m-Tn<$\frac{n}{{2}^{n-1}}$對(duì)一切n∈N*恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.現(xiàn)有2門不同的考試要安排在5天之內(nèi)進(jìn)行,每天最多進(jìn)行一門考試,且不能連續(xù)兩天有考試,那么不同的考試安排方案有( 。┓N.
A.6種B.16種C.12種D.20種

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知等差數(shù)列{an}中,a3=8,a8=3,則該數(shù)列的前10項(xiàng)和為( 。
A.55B.45C.35D.25

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.在數(shù)列{an}中,已知a1=4、a2=8,an+2等于an•an+1的個(gè)位數(shù)(n∈N*),則a2016的值是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知函數(shù)f(x)=sinx-2cosx,當(dāng)x=α?xí)rf(x)取得最大值,則cosα=-$\frac{2\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知角α為三角形的一個(gè)內(nèi)角,且滿足sinαtanα<0,則角α的第( 。┫笙藿牵
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知銳角△ABC的內(nèi)角分別為A,B,C,其對(duì)邊分別為a,b,c,向量$\overrightarrow{m}$=(2sinB,-$\sqrt{3}$),$\overrightarrow{n}$=(cos2B,cosB),且$\overrightarrow{m}$∥$\overrightarrow{n}$.
(Ⅰ)求角B的大;
(Ⅱ)若b=$\sqrt{3}$,求△ABC的周長(zhǎng)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.如圖是一個(gè)多面體三視圖,它們都是斜邊長(zhǎng)為$\sqrt{2}$的等腰Rt△,則這個(gè)多面體最長(zhǎng)一條棱長(zhǎng)為( 。
A.$\sqrt{2}$B.$\sqrt{3}$C.$2\sqrt{3}$D.$3\sqrt{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案