8.已知正方體ABCD-A1B1C1D1,E是棱CD中點(diǎn),則直線A1E與直線BC1所成角的余弦值為(  )
A.$\frac{{2\sqrt{2}}}{3}$B.$\frac{1}{3}$C.$\frac{{\sqrt{3}}}{3}$D.0

分析 令正方體ABCD-A1B1C1D1的棱長為1,建立空間坐標(biāo)系,利用向量法,可得直線A1E與直線BC1所成角的余弦值.

解答 解:令正方體ABCD-A1B1C1D1的棱長為1,
建立如圖所示的坐標(biāo)系,
則$\overrightarrow{{BC}_{1}}$=(1,0,1),$\overrightarrow{{A}_{1}E}$=(1,-$\frac{1}{2}$,-1),
則直線A1E與直線BC1所成角θ的余弦值為:
cosθ=$\frac{|\overrightarrow{{BC}_{1}}•\overrightarrow{{A}_{1}E}|}{\left|\overrightarrow{{BC}_{1}}\right|•\left|\overrightarrow{{A}_{1}E}\right|}$=0,
故選:D.

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是空間中直線與直線的位置關(guān)系,異面直線及其所成的角,難度中檔.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.定義在(0,$\frac{π}{2}$)上的函數(shù)f(x),f′(x)是它的導(dǎo)函數(shù),且恒有f(x)<f′(x)tanx成立.則下列不等關(guān)系成立的是( 。
A.$\sqrt{3}$•f($\frac{π}{6}$)>2cos1•f(1)B.$\sqrt{3}$f($\frac{π}{6}$)<f($\frac{π}{3}$)C.$\sqrt{6}$f($\frac{π}{6}$)>2f($\frac{π}{4}$)D.$\sqrt{2}$f($\frac{π}{4}$)>f($\frac{π}{3}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知f(x)是定義在R上的奇函數(shù),且f(x+$\frac{3}{2}$)=-f(x),當(dāng)x∈(-2,0)時(shí)f(x)=2x,則f(2014)+f(2015)+f(2016)=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知函數(shù)f(x)=$\left\{\begin{array}{l}-x,x∈[{-1,0})\\ \frac{1-f(x-1)}{f(x-1)},x∈[{0,1})\end{array}\right.$,若方程f(x)-kx+k=0 有二個(gè)不同的實(shí)數(shù)根,則實(shí)數(shù)k的取值范圍是(  )
A.$({-1,-\frac{1}{2}}]$B.$[{-\frac{1}{2},0})$C.[1,+∞)D.$[{-\frac{1}{2},+∞})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.過點(diǎn)作(3,2)圓(x-1)2+y2=1的兩條切線,切點(diǎn)分別為A、B,則直線AB的方程為(  )
A.2x+2y-3=0B.x+2y-3=0C.2x+y-3=0D.2x+2y+3=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知集合P={1,2,3},則集合P的真子集個(gè)數(shù)為( 。﹤(gè).
A.5B.6C.7D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.若函數(shù)f(x)=3x+1+m•3-x為R上的奇函數(shù),則f($\frac{m}{3}$)的值為-8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.在銳角△ABC中,a,b,c是角A,B,C的對(duì)邊$\sqrt{3}$sinC-cosB=cos(A-C).
(1)求角A的度數(shù);
(2)若a=2$\sqrt{3}$,且△ABC的面積是3$\sqrt{3}$,求b+c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知向量$\overrightarrow a,\overrightarrow b,\overrightarrow c$是空間的一個(gè)基底,其中與向量$\overrightarrow a+\overrightarrow b$,$\overrightarrow a-\overrightarrow b$一定構(gòu)成空間另一個(gè)基底的向量是( 。
A.$\overrightarrow a$B.$\overrightarrow b$C.$\overrightarrow c$D.$\overrightarrow a,\overrightarrow b,\overrightarrow c$都不可以

查看答案和解析>>

同步練習(xí)冊(cè)答案