2.已知函數(shù)y=f(x)+sin$\frac{π}{6}$x為偶函數(shù),若f(${log_{\sqrt{2}}}2$)=$\sqrt{3}$,則f($log_2\frac{1}{4}$)=( 。
A.$2\sqrt{3}$B.$\sqrt{3}$C.$\frac{{\sqrt{3}}}{2}$D.$\frac{{3\sqrt{3}}}{2}$

分析 由題意可得 f(x)-f(-x)=-2sin$\frac{π}{6}$x,結合 f(${log_{\sqrt{2}}}2$)=f(2)=$\sqrt{3}$,f($log_2\frac{1}{4}$)=f(-2),求得 f(-2)的值.

解答 解:∵函數(shù)y=f(x)+sin$\frac{π}{6}$x為偶函數(shù),
∴f(-x)-sin$\frac{π}{6}$x=f(x)+sin$\frac{π}{6}$x,
∴f(x)-f(-x)=-2sin$\frac{π}{6}$x.
∵f(${log_{\sqrt{2}}}2$)=f(2)=$\sqrt{3}$,f($log_2\frac{1}{4}$)=f(-2),
∴$\sqrt{3}$-f(-2)=-2•$\frac{\sqrt{3}}{2}$=-$\sqrt{3}$,
∴f(-2)=2$\sqrt{3}$,
故選:A.

點評 本題主要考查函數(shù)的奇偶性的應用,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

12.已知直線l1:(m-2)x+3y+2m=0,l2:x+my+6=0
(1)若直線l1與l2垂直,求實數(shù)m的值;
(2)若直線l1與l2平行,求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.在平面直角坐標系xOy中,直線2x+ay-1=0和直線(2a-1)x-y+1=0互相垂直,則實數(shù)a的值是$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.在△ABC中,角A,B,C所對的邊分別為a,b,c,若$\frac{tanA}{{a}^{2}}$=$\frac{tanB}{^{2}}$,則△ABC的形狀是( 。
A.直角三角形B.等腰三角形
C.等腰直角三角形D.等腰或直角三角形

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知在曲線y=(ax+b)ex上的一點P(0,1)的切線方程為2x-y+1=0,則a+b=( 。
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知全集U={x|x=3n,x<30,n∈N*},∁UA∩B={6,15},A∩∁UB={3,21},∁UA∩∁UB={9,18,24},求A,B.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.已知$\overrightarrow{a}$=(1,2),$\overrightarrow$=(x,-1),若$\overrightarrow{a}$⊥$\overrightarrow$,則x=( 。
A.-2B.-1C.1D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.已知函數(shù)f(x)=3ax2+(b-2)x+5a+b是偶函數(shù),且定義域為[a-2,a],則a+b=3,f(x)在區(qū)間上的最大值為10最小值為7.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知1≤lg$\frac{x}{y}$≤2,3≤lg$\frac{x^3}{{\root{3}{y}}}$≤4,則lg$\frac{x^2}{{\sqrt{y}}}$的范圍為( 。
A.[2,3]B.[2,$\frac{23}{8}$]C.[$\frac{5}{16}$,$\frac{9}{16}$]D.[$\frac{27}{16}$,$\frac{9}{4}$]

查看答案和解析>>

同步練習冊答案