1.根據(jù)要求求值:
(1)用輾轉(zhuǎn)相除法求123和48的最大公約數(shù).
(2)用更相減損術(shù)求80和36的最大公約數(shù).
(3)把89化為二進制數(shù).

分析 (1)利用輾轉(zhuǎn)相除法即可得出;
(2)我們將80作為大數(shù),36作為小數(shù),因為80和36都是偶數(shù),要除公因數(shù)2.依此類推可得:80÷4=20,36÷4=9.利用更相減損術(shù)求20與9的最大公約數(shù),即可得出.
(3)如圖所示,即可得出.

解答 解:(1)輾轉(zhuǎn)相除法求最大公約數(shù)的過程如下:
123=2×48+27,48=1×27+21,27=1×21+6,21=3×6+3,6=2×3+0,
最后6能被3整除,得123和48的最大公約數(shù)為3.
(2)我們將80作為大數(shù),36作為小數(shù),因為80和36都是偶數(shù),要除公因數(shù)2.
80÷2=40,36÷2=18.40和18都是偶數(shù),要除公因數(shù)2.40÷2=20,18÷2=9.
求20與9的最大公約數(shù),20-9=11,11-9=2,9-2=7,7-2=5,5-2=3,3-2=1,
2-1=1,可得80和36的最大公約數(shù)為22×1=4.
(3)如圖所示,可得:89(10)=1 011 001(2)

點評 本題考查了輾轉(zhuǎn)相除法、更相減損術(shù)、“連續(xù)除2取余數(shù)”方法,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.設(shè)函數(shù)f(x)=alnx+bx2,若函數(shù)f(x)在x=1處與直線y=-$\frac{1}{2}$相切.
(1)求實數(shù)a,b的值;
(2)求函數(shù)f(x)在[$\frac{1}{e}$,e]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知橢圓$\frac{y^2}{a^2}$+$\frac{x^2}{b^2}$=1(a>b>0),過點A(b,0),B(0,-a)的直線傾斜角為$\frac{π}{3}$,原點到該直線的距離為$\frac{{\sqrt{3}}}{2}$
(1)求橢圓的方程;
(2)斜率大于零的直線過D(0,1)與橢圓交于E(x1,y1),F(xiàn)(x2,y2)兩點,且x1=-2x2,求直線EF的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若sin4x<cos4x,則x的取值范圍是(  )
A.$\left\{{\left.x\right|2kπ-\frac{3}{4}π<x<2kπ+\frac{π}{4},k∈Z}\right\}$B.$\left\{{\left.x\right|2kπ+\frac{π}{4}<x<2kπ+\frac{5}{4}π,k∈Z}\right\}$
C.$\left\{{\left.x\right|kπ-\frac{π}{4}<x<kπ+\frac{π}{4},k∈Z}\right\}$D.$\left\{{\left.x\right|kπ+\frac{π}{4}<x<kπ+\frac{3}{4}π,k∈Z}\right\}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知下列三個方程:x2+2ax+2a+3=0,x2+2(a+1)x+a2=0,x2+2ax-2a=0至少有一個方程有實數(shù)根,則實數(shù)a的取值范圍為(  )
A.(-∞,-1]∪[2,+∞)B.(-1,2)C.(-∞,-1]∪[-$\frac{1}{2}$,+∞)D.(-1,-$\frac{1}{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知拋物線的焦點是F,準(zhǔn)線是l,M是拋物線上一點,則經(jīng)過點F、M且與l相切的圓的個數(shù)可能是(  )
A.0,1B.1,2C.2,4D.0,1,2,4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知點F為拋物線C:x2=4y的焦點,A,B,D為拋物線C上三點,且點A在第一象限,直線AB經(jīng)過點F,BD與拋物線C在點A處的切線平行,點M為BD的中點.
(1)證明:AM與y軸平行;
(2)求△ABD面積S的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=tan($\frac{π}{2}$x+$\frac{π}{3}$)
(1)求f(x)的最小正周期.
(2)求f(x)的定義域和單調(diào)區(qū)間.
(3)求方程f(x)=$\sqrt{3}$的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.在程序框圖中,圖形符號“□”可用于( 。
A.輸出B.賦值C.判斷D.結(jié)束算法

查看答案和解析>>

同步練習(xí)冊答案