若使圓x2+y2+2x+ay-a-12=0(a為實(shí)數(shù))的面積最小,則a=
 
考點(diǎn):圓的一般方程
專題:直線與圓
分析:根據(jù)圓的標(biāo)準(zhǔn)方程的特征,只有半徑的平方最小,才能滿足條件,由此利用二次函數(shù)的性質(zhì)求得a的值.
解答: 解:圓x2+y2+2x+ay-a-12=0,即(x+1)2+(y+
a
2
2 =13+a+
a2
4
,
要使圓的面積最大,只有 13+a+
a2
4
 最大,故當(dāng)a=-2時(shí),圓的面積最小,
故答案為:-2.
點(diǎn)評(píng):本題主要考查圓的標(biāo)準(zhǔn)方程的特征,二次函數(shù)的性質(zhì),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an}的前n項(xiàng)和為Sn,若S3=9,S5=25,則S8=( 。
A、60B、62C、64D、66

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
OA
=(4,0),
0B
=(2,2
3
),
OC
=(1-λ)
OA
OB
(λ2≠λ)
(1)證明A,B,C三點(diǎn)共線,并在
AB
=
BC
時(shí),λ的值;
(2)求|
OC
|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列結(jié)論,不正確的是(  )
A、若p是假命題,q是真命題,則命題p∨q為真命題
B、若p∧q是真命題,則命題p和q均為真命題
C、命題“若sinx=siny,則x=y”的逆命題為假命題
D、命題“?x,y∈R,x2+y2≥0”的否定是“?x0,y0∈R,x02+y02<0”

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(a)=sin(
2
-a)tan(π-a),則f(-
31π
3
)的值為( 。
A、-
1
2
B、
1
2
C、
3
2
D、-
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知x2-[x]=2,其中[x]表示不大于x 的最大整數(shù),則x的取值的集合是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

計(jì)算8 
2
3
+25 -
1
2
0-lne=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)F是橢圓
x2
a2
+
y2
b2
=1
(a>b>0)的左焦點(diǎn),直線l方程為x=-
a2
c
,直線l與x軸交于P點(diǎn),M,N分別為橢圓的左右頂點(diǎn),已知丨MN丨=2
2
,且丨PM丨=
2
丨MF丨.
(1)求橢圓標(biāo)準(zhǔn)方程.
(2)過(guò)點(diǎn)P的直線交橢圓與A,B兩點(diǎn),求△ABF面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)A(3,-4),B(6,3),C(5-m,3+m).
(1)若點(diǎn)A,B,C是一個(gè)三角形的三個(gè)頂點(diǎn),求實(shí)數(shù)m應(yīng)滿足的條件;
(2)若△ABC是以A為直角頂點(diǎn)的直角三角形,求實(shí)數(shù)m的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案