4.已知正項(xiàng)等比數(shù)列{an}中,2a1+a2=a3,3a6=8a1a3
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=log2a1+log2a2+…+log2an-nlog23,求數(shù)列{bn}的通項(xiàng)公式.

分析 (Ⅰ)通過設(shè)正項(xiàng)等比數(shù)列{an}的公比為q(q>1),利用已知條件建立方程組,進(jìn)而計(jì)算可得結(jié)論;
(Ⅱ)通過(I)可知${log_2}{a_n}={log_2}(3×{2^{n-1}})={log_2}3+n-1$,進(jìn)而利用分組求和法計(jì)算即得結(jié)論.

解答 解:(Ⅰ)設(shè)正項(xiàng)等比數(shù)列{an}的公比為q(q>1),
由2a1+a2=a3得$2{a_1}+{a_1}q={a_1}{q^2}$,
故q2-q-2=0,
解得q=2,或q=-1(舍去).…(2分)
由3a6=8a1a3得$3{a_1}{q^5}=8a_1^2{q^2}$,故a1=3. …(4分)
于是數(shù)列{an}的通項(xiàng)公式為${a_n}=3×{2^{n-1}}$.…(6分)
(Ⅱ)由于${log_2}{a_n}={log_2}(3×{2^{n-1}})={log_2}3+n-1$…(8分)
故bn=(log23+0)+(log23+1)+(log23+2)…+(log23+n-1)-nlog23
=$1+2+…+(n-1)=\frac{n(n-1)}{2}$. …(12分)

點(diǎn)評 本題考查數(shù)列的通項(xiàng)及前n項(xiàng)和,對表達(dá)式的靈活變形是解決本題的關(guān)鍵,注意解題方法的積累,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知x,y的取值如表:
 x
 y 11.3 3.2 5.6 8.9 
若依據(jù)表中數(shù)據(jù)所畫的散點(diǎn)圖中,所有樣本點(diǎn)(xi,yi)(i=1,2,3,4,5)都在曲線y=$\frac{1}{2}$x2+a附近波動(dòng),則a=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知數(shù)列{an},{bn}滿足a1=2,2an=1+an.a(chǎn)n+1,bn=an-1數(shù)列{bn}的前n項(xiàng)和為Sn,Tn=S2n-Sn
(I)求證:數(shù)列{$\frac{1}{_{n}}$}為等差數(shù)列;
(Ⅱ)求Tn的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)x,y滿足條件$\left\{{\begin{array}{l}{2x+y≥4,\;\;}\\ \begin{array}{l}x-y≥1\\ x-2y≤2\end{array}\end{array}}\right.$且z=x+y+a(a為常數(shù))的最小值為4,則實(shí)數(shù)a的值為( 。
A.$\frac{5}{3}$B.2C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.如圖,直線在平面α外,直線m1,m2,n均在平面α內(nèi),若m1∥m2,且m1,m2均與n相交,下列能證明l⊥α的是( 。
A.l⊥m1且l⊥m2B.l⊥m1且l⊥nC.l⊥m1D.l⊥n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知集合M={x|3x-x2>0},N={x|x2-4x+3>0},則M∩N=(  )
A.(0,1)B.(1,3)C.(0,3)D.(3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.函數(shù)f(x)=x3-$\frac{ln|x|}{x}$的圖象大致為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.復(fù)數(shù)$\frac{1}{i-2}$-$\frac{i}{1+2i}$在復(fù)平面內(nèi)所對應(yīng)的點(diǎn)位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.在△ABC中,角A、B、C與邊a,b,c滿足asinAsinB+bcos2A=$\sqrt{2}$a.
(1)求$\frac{a}$的值;
(2)若c=2,且△ABC面積為2$\sqrt{2}$,求邊長a.

查看答案和解析>>

同步練習(xí)冊答案