15.已知數(shù)列{an},{bn}滿足a1=2,2an=1+an.a(chǎn)n+1,bn=an-1數(shù)列{bn}的前n項和為Sn,Tn=S2n-Sn
(I)求證:數(shù)列{$\frac{1}{_{n}}$}為等差數(shù)列;
(Ⅱ)求Tn的最小值.

分析 (I)化簡可得2(an-1)+2=(an-1)(an+1-1)+(an-1)+(an+1-1)+2,從而可得$\frac{1}{{a}_{n+1}-1}$=$\frac{1}{{a}_{n}-1}$+1,從而證明.
(Ⅱ)由(I)知$\frac{1}{_{n}}$=n,從而可得bn=$\frac{1}{n}$,從而化簡Tn=S2n-Sn=$\frac{1}{n+1}$+$\frac{1}{n+2}$+…+$\frac{1}{2n}$,從而判斷即可.

解答 解:(I)證明:∵2an=1+an.a(chǎn)n+1,
∴2(an-1)+2=(an-1)(an+1-1)+(an-1)+(an+1-1)+2,
∴an-1=(an-1)(an+1-1)+(an+1-1),
∴$\frac{1}{{a}_{n+1}-1}$=$\frac{1}{{a}_{n}-1}$+1,
即$\frac{1}{_{n+1}}$=$\frac{1}{_{n}}$+1,
故數(shù)列{$\frac{1}{_{n}}$}為公差為1的等差數(shù)列;
(Ⅱ)$\frac{1}{_{1}}$=$\frac{1}{2-1}$=1,
故$\frac{1}{_{n}}$=1+1•(n-1)=n,
故bn=$\frac{1}{n}$,
故Tn=S2n-Sn=$\frac{1}{n+1}$+$\frac{1}{n+2}$+…+$\frac{1}{2n}$,
故Tn+1-Tn=$\frac{1}{n+2}$+…+$\frac{1}{2n}$+$\frac{1}{2n+1}$+$\frac{1}{2n+2}$-($\frac{1}{n+1}$+$\frac{1}{n+2}$+…+$\frac{1}{2n}$)
=$\frac{1}{2n+1}$+$\frac{1}{2n+2}$-$\frac{1}{n+1}$>0,
故當n=1時有最小值,即T1=$\frac{1}{2}$.

點評 本題考查了等差數(shù)列的性質(zhì)及數(shù)列的判斷,同時考查了整體思想與轉化思想的應用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

5.設函數(shù)f(x)=ax2+bx+c,g(x)=c|x|+bx+a,對任意的x∈[-1,1]都有|f(x)|≤$\frac{1}{2}$.
(1)求|f(2)|的最大值;
(2)求證:對任意的x∈[-1,1],都有|g(x)|≤1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.用秦九韶算法計算多項式f(x)=5x5+4x4+3x3+2x2+x+1,求當x=3時的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知變量x和y滿足關系y=-0.2x+3,變量y與z負相關.下列結論中正確的是( 。
A.x與y負相關,x與z負相關B.x與y正相關,x與z正相關
C.x與y正相關,x與z負相關D.x與y負相關,x與z正相關

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.過拋物線E:y2=4x的焦點F作兩條互相垂直的弦AB,CD,若AB,CD的中點分別為M,N,則△FMN面積的最小值為4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知拋物線C1:y2=2px(p>0)過第四象限的點M,直線l:2x-$\sqrt{2}$y-2=0過拋物線C1的焦點F.若|MF|=3,則以M為圓心,且與直線l相切的圓的方程為( 。
A.(x-2)2+(y+2$\sqrt{2}$)2=8B.(x-2)2+(y+2$\sqrt{2}$)2=64C.(x-2)2+(y+2$\sqrt{2}$)2=6D.(x-2)2+(y+2$\sqrt{2}$)2=36

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.給出下列命題:
①函數(shù)y=sin($\frac{5}{2}$π-x)是偶函數(shù);
②方程lgx=sinx有兩個不等的實根;
③點($\frac{π}{3}$,0)是函數(shù)f(x)=sin(2x+$\frac{π}{3}$)是的一個對稱中心
④設A、B、C∈(0,$\frac{π}{2}$),且sinA-sinC=sinB,cosA+cosC=cosB,則B-A等于-$\frac{π}{3}$;
以上命題中正確的個數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知正項等比數(shù)列{an}中,2a1+a2=a3,3a6=8a1a3
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設bn=log2a1+log2a2+…+log2an-nlog23,求數(shù)列{bn}的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知數(shù)列{an}滿足a1=m,an+1=$\left\{\begin{array}{l}{2{a}_{n},n=2k-1}\\{{a}_{n}+r,n=2k}\end{array}\right.$(k∈N*,r∈R),其前n項和為Sn
(1)當m與r滿足什么關系時,對任意的n∈N*,數(shù)列{an}都滿足an+2=an?
(2)對任意實數(shù)m,r,是否存在實數(shù)p與q,使得{a2n+1+p}與{a2n+q}是同一個等比數(shù)列?若存在,請求出p,q滿足的條件;若不存在,請說明理由;
(3)當m=r=1時,若對任意的n∈N*,都有Sn≥λan,求實數(shù)λ的最大值.

查看答案和解析>>

同步練習冊答案