2.數(shù)列$\frac{1}{2}$,$\frac{1}{3}$,$\frac{1}{4}$,$\frac{1}{5}$…的通項公式可能為( 。
A.${a_n}=\frac{1}{n}$B.${a_n}=\frac{1}{n+1}$C.an=nD.${a_n}=\frac{1}{2n}$

分析 根據(jù)題意,分析數(shù)列的各項的分母與分母的變化規(guī)律,進而用含有n的式子表示出來,即可得答案

解答 解:根據(jù)題意,所給數(shù)列的各項分母依次為2、3、4、5…,為n+1,
而各項的分子均為1,
故數(shù)列$\frac{1}{2}$,$\frac{1}{3}$,$\frac{1}{4}$,$\frac{1}{5}$…的通項公式可能為an=$\frac{1}{n+1}$,
故選:B

點評 本題考查數(shù)列的表示與歸納推理的運用,解答的關(guān)鍵在于根據(jù)所給的數(shù)列的特點,發(fā)現(xiàn)數(shù)列的變化規(guī)律.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知圓F1:(x+1)2+y2=16及點F2(1,0),在圓F1任取一點M,連接MF2并延長交圓F1于點N,連接F1N,過F2作F2P∥MF1交NF1于P,如圖所示.若從F2點引一條直線l交軌跡P于A,B兩點,變化直線l (l的斜率一直存在),則$\frac{1}{{|F}_{2}A|}$+$\frac{1}{|{F}_{2}B|}$的值( 。
A.$\frac{4}{3}$B.$\frac{1}{2}$C.$\frac{{\sqrt{3}+1}}{2}$D.$\sqrt{3}+1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知圓錐的底面半徑為R,高為2R,在它的所有內(nèi)接圓柱中,側(cè)面積的最大值是( 。
A.$\frac{1}{4}π{R^2}$B.$\frac{1}{2}π{R^2}$C.πR2D.2πR2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=-x3+ax2+bx(a,b∈R)的圖象如圖所示,它與x軸在原點處相切,且x軸與函數(shù)圖象所圍成區(qū)域(圖中陰影部分)的面積為$\frac{1}{12}$,若函數(shù)f(x)在$({\frac{-1-k}{2},\frac{-1+k}{2}})$上單調(diào)增,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知數(shù)列{an}的前n項和為Sn,且a1=3,${a_n}=2{S_{n-1}}+{3^n}$(n∈N*且n≥2),則數(shù)列{an}的通項公式為an=(2n+1)•3n-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知四棱錐V-ABCD的底面是面積為16的正方形ABCD,側(cè)面是全等的等腰三角形,一條側(cè)棱長為2$\sqrt{11}$,計算它的高和側(cè)面三角形底邊上的高.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.某人經(jīng)營一個抽獎游戲,顧客花費2元錢可購買一次游戲機會,每次游戲中,顧客從裝有1個黑球,3個紅球,6個白球的不透明袋子中依次不放回地摸出3個球(除顏色外其他都相同),根據(jù)摸出的球的顏色情況進行兌獎,顧客獲得一等獎、二等獎、三等獎、四等獎時分別可領(lǐng)取獎金a元、10元、5元、1元,若經(jīng)營者將顧客摸出的3個球的顏色情況分成以下類別:A:1個黑球2個紅球;B:3個紅球;C:恰有1個白球;D:恰有2個白球;E:3個白球.且經(jīng)營者計劃將五種類別按照發(fā)生機會從小到大的順序分別對應(yīng)中一等獎、中二等獎、中三等獎、中四等獎、不中獎五個層次.
(1)請寫出一至四等獎分別對應(yīng)的類別(寫出字母即可);
(2)若經(jīng)營者不打算在這個游戲的經(jīng)營中虧本,求a的最大值;
(3)若a=50,當顧客摸出的第一個球是紅球時,求他領(lǐng)取的獎金的平均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖所示,高二月考考試后,將高二(3)班男生、女生各四名同學(xué)的數(shù)學(xué)成績(單位:分)用莖葉圖表示.女生某個數(shù)據(jù)的個位數(shù)模糊,記為x,已知男生、女生的平均成績相同.
(Ⅰ)求x的值,并判斷男生與女生哪組學(xué)生成績更穩(wěn)定;
(Ⅱ)在男生、女生中各抽取1名同學(xué),求這2名同學(xué)的得分之和低于200分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.求滿足下列條件的實數(shù)x的取值范圍:
(1)3x<9;
(2)2x>$\frac{1}{8}$;
(3)($\frac{1}{3}$)x>$\root{3}{9}$;
(4)3x>7x

查看答案和解析>>

同步練習(xí)冊答案